Plan de Protection de l’Atmosphère d’Île-de-France

Direction Régionale et Interdépartementale de l’Environnement et de l’Energie

www.maqualitedelair-idf.fr
CONTACT
DRIEE - SERVICE ÉNERGIE, CLIMAT, VÉHICULES
12 COURS LOUIS LUMIERE
CS 70027
94307 VINCENNES CEDEX
ppa-idf@developpement-durable.gouv.fr
www.maqualitedelair-idf.fr
LE MOT DES PRÉFETS

Depuis la mise en place du premier PPA en 2005, la qualité de l’air en Île-de-France s’est sensiblement améliorée. Ces avancées sont le fruit des politiques européennes et nationales en ce domaine qui ont notamment permis de réduire les émissions des industries ainsi que celles des véhicules routiers au travers des normes EURO.

Malgré cette amélioration, de nombreux Franciliens restent exposés à un air qui ne respecte pas les valeurs limites définies par l’union européenne. De nombreuses études sanitaires et économiques montrent en outre que le coût de l’inaction est nettement supérieur aux investissements nécessaires pour limiter les émissions de polluants et respecter les seuils préconisés par l’Organisation Mondiale de la Santé.

L’État français a pris la mesure de cet enjeu. De nouveaux outils législatifs et réglementaires ont été créés. Les compétences des collectivités en matière de lutte contre la pollution de l’air ont été clarifiées. Des aides financières ont été mises en place pour accompagner les collectivités territoriales et les citoyens dans le développement de projets ou pour l’acquisition d’équipements plus vertueux. Ainsi, le programme de rénovation et de développement des réseaux de transports en commun, acté dans le cadre du Grand Paris, est l’un de ces moyens.

La lutte contre la pollution atmosphérique en Île-de-France demeure un défi.

Aujourd’hui, à l’issue d’une démarche participative de plus d’un an, le nouveau plan de protection de l’atmosphère en Île-de-France est adopté. Construit autour de 25 défis, déclinés en 46 actions concrètes, il ambitionne de ramener notre région sous les seuils européens à l’horizon 2025. En effet, il doit permettre de réduire très fortement, entre 40 et 70 % selon les polluants, le nombre de franciliens exposés à des dépassements de valeurs limites de qualité de l’air.

La mobilisation de tous, amorcée dans le cadre des travaux du PPA, doit se poursuivre. Nous devons faire plus, et plus vite : aménager un réseau de pistes cyclables continu et sécurisé, développer la pratique du covoiturage, démultiplier les bornes de recharge électrique, créer des parcs relais aux abords des gares, étendre les zones à trafic limité, favoriser le renouvellement des appareils de chauffage au bois peu performants ou encore faire évoluer les pratiques d’épandage de fertilisants agricoles.

Les Plans Climat-air-énergie territoriaux, les zones à circulation restreinte, ou encore les Plans de mobilité, sont autant de leviers qui permettent aux collectivités, aux entreprises, aux Franciliens eux-mêmes, d’engager notre région dans une nouvelle ère.

Le PPA s’inscrit résolument au sein de ce dispositif. Pour que chacun d’entre nous, Etat, collectivités territoriales, entreprises et citoyens se sente pleinement acteur de la reconquête de la qualité de l’air.

Michel CADOT
Préfet de la région d’Île-de-France,
Préfet de Paris

Michel DELPUECH
Préfet de police,
Préfet de la Zone de Défense et de Sécurité de Paris
SOMMAIRE

RÉSUMÉ NON TECHNIQUE ... 10
La pollution atmosphérique : enjeu sanitaire et environnemental ... 10
Un outil juridique pour une meilleure qualité de l’air ... 10
L’Île-de-France, région sujette aux dépassements des valeurs réglementaires 11
Les grands enjeux franciliens pour une meilleure qualité de l’air .. 11
La concertation, mot d’ordre de la révision du PPA 2013 .. 13
Une méthode d’analyse transversale pour sélectionner les défis à relever d’ici 2020 13
Évaluation à horizon 2020 : une modélisation partielle des impacts du PPA 15
Conclusion ... 16
Liste des défis ... 17

PREMIÈRE PARTIE

Pourquoi un Plan de Protection de l’Atmosphère en Île-de-France ? ... 20

1 Introduction .. 20

2 Des polluants émis par tous les secteurs ... 21
 2.1 Les polluants concernés .. 21
 › Les particules fines (PM_{10} et PM_{2,5}) ... 22
 › Les oxydes d’azote (NO_x) .. 23
 2.2 Les risques sanitaires à court et à long terme .. 24
 › Des effets à court terme .. 24
 › Des effets à long terme .. 24
 › De la définition de seuils d’exposition .. 24
 › Cas des personnes vulnérables ... 24
 2.3 Les émissions de polluants en Île-de-France ... 24
 › Secteur aérien .. 25
 › Agriculture ... 25
 › Industrie .. 27
 › Résidentiel, tertiaire et chantier ... 28
 › Transport routier, fluvial et ferroviaire ... 29
 › Emissions totales de polluants en Île-de-France ... 30

3 Mesurer et modéliser la qualité de l’air en Île-de-France ... 31
 3.1 Une urbanisation favorisant l’accumulation de polluants ... 31
 3.2 Une région maillée par un réseau de stations de mesure .. 31
 › Classification des environnements d’implantation ... 31
 3.3 La modélisation pour surveiller la qualité de l’air .. 32

4 Des efforts réels ces dix dernières années ... 33
 4.1 Diminution des moyennes annuelles de PM_{10} et NO_x .. 33
 4.2 Des épisodes de pollution aux PM_{10} plus fréquents que pour les autres polluants 34
 4.3 Diminution de l’exposition de la population aux PM_{10} et NO_x .. 35
 4.4 Les bénéfices attendus de l’amélioration de la qualité de l’air ... 36
 › Étude INERIS .. 37
 › Autres études .. 37
 4.5 Bilan du PPA 2013 ... 38

5 Un nouveau PPA pour accélérer la reconquête de la qualité de l’air ... 40
 5.1 Une volonté d’agir à plusieurs niveaux ... 40
 › Les échelles d’intervention .. 40
 › La réglementation .. 40
 5.2 Des dépassements de valeurs limites constatées en 2015 en Île-de-France 43
 5.3 Des injonctions juridiques à agir .. 43
 › Avis motivé pour les PM_{10} .. 43
 › Avis motivé pour le NO_x ... 44
 › Injonction du Conseil d’État .. 44
 › Le PPA dans son contexte réglementaire français .. 44
DEUXIÈME PARTIE

Un plan d’actions pour l’Ile-de-France ... 46

1 Les hypothèses pour modéliser émissions et concentrations en 2020 .. 46
 1.1 Augmentation de la population et des emplois ... 46
 1.2 Evolution de l’aménagement ... 46
 1.3 Augmentation des déplacements en transports en commun ... 46
 1.4 Une augmentation moindre du trafic routier ... 47
 1.5 Evolution du parc automobile ... 48
 1.6 De nombreuses évolutions réglementaires .. 48
 › Déploiement des certificats qualité de l’air. .. 48
 › Des épisodes de pollution plus nombreux suite à un abaissement des seuils 48
 › La circulation différenciée pour remplacer la circulation alternée 48
 › Plans climat Air Energie Territoriaux, des outils locaux supplémentaires pour la reconquête de la qualité de l’air ... 50

2 Scenario « fil de l’eau 2020 (FDE) » : une tendance nette à l’amélioration .. 50
 2.1 Fil de l’eau 2020 : plus de 25% de réduction des émissions ... 50
 › Augmentation des émissions du transport aérien ... 50
 › Stabilisation des émissions de l’agriculture ... 50
 › Diminution des émissions industrielles ... 51
 › Diminution des émissions du secteur résidentiel tertiaire et des chantiers 52
 › Diminution des émissions du trafic routier .. 52
 › Diminution des émissions régionales totales ... 54
 2.2 Fil de l’eau 2020 : diminution des concentrations de polluants ... 54
 › Une nouvelle révision du PPA pour accélérer la reconquête de la qualité de l’air 56
 › Une révision basée sur la concertation .. 56
 › Analyse multicritère des défis .. 57

3 Scenario 2020 + PPA : le PPA accélère l’amélioration de la qualité de l’air 58
 3.1 L’impact de 12 défis du PPA : plus de 35% de baisses des émissions par rapport à 2014 58
 3.2 Evaluation des émissions totales ... 61
 3.3 Modélisation des concentrations en polluants en 2020 avec le PPA 61
 3.4 Les bénéfices sanitaires des 12 défis évaluables du PPA ... 66

4 La solution mise en place pour suivre la mise en œuvre des défis du PPA .. 67
 5.1 Un dispositif de suivi concret ... 67
 5.2 Une véritable stratégie de communication ... 67

Conclusion et liste des défis ... 68

L’ÎLE-DE FRANCE :
encore quelques dépassements des valeurs limites européennes

3 FOIS MOINS DE FRANCIENS ESPOSÉS

2017

2020

2025

Respect des valeurs limites européennes

UNE DYNAMIQUE COLLECTIVE POUR LA RECONQUÊTE DE LA QUALITÉ DE L’AIR

DES CHANGEMENTS DE COMPORTEMENT

DE NOUVEAUX HABITUDES POUR LA RECONQUÊTE DE LA QUALITÉ DE L’AIR

DES ACTIONS LOCALES (PLANS CLIMAT, AIR, ENERGIE TERRITORIAUX)
TROISIÈME PARTIE
LES DÉFIS DU PPA

Fiches défis : secteur aérien
Diminuer les émissions des APU et des véhicules et engins de pistes au sol .. 72
Diminuer les émissions des aéronefs au roulage .. 76
Améliorer la connaissance des émissions des avions .. 80

Fiches défis : secteur agricole
Favoriser les bonnes pratiques associées à l’utilisation de l’urée solide pour limiter les émissions de \(\text{NH}_3 \) .. 82
Former les agriculteurs au cycle de l’azote et à ses répercussions en termes de pollution atmosphérique .. 86
Évaluer l’impact du fractionnement du second apport sur céréales d’hiver sur les émissions de \(\text{NH}_3 \) .. 88

Fiches défis : secteur industrie
Renforcer la surveillance des installations de combustion de taille moyenne (2-50MW) .. 90
Réduire les émissions de particules des installations de combustion à la biomasse et des installations de co-incinération de CSR .. 94
Réduire les émissions de \(\text{NO}_x \) issues des installations d’incinération d’ordures ménagères ou de co-incinération de CSR .. 97
Réduire les émissions de \(\text{NO}_x \) des installations de combustion à la biomasse entre 2 et 100 MW et des installations de co-incinération de CSR .. 102

Fiches défis : secteur résidentiel-tertiaire et chantiers
Favoriser le renouvellement des équipements anciens de chauffage individuel au bois .. 106
Élaborer une charte bois énergie impliquant l’ensemble de la chaîne de valeur (des professionnels au grand public) et favoriser les bonnes pratiques .. 110
Élaborer une charte globale chantiers propres impliquant l’ensemble des acteurs (des maîtres d’ouvrage aux maîtres d’œuvre) et favoriser les bonnes pratiques .. 114

Fiches défis : secteur transport routier
Élaborer des plans de mobilité par les entreprises et les personnes morales de droit public .. 118
Apprécier les impacts d’une harmonisation à la baisse des vitesses maximales autorisées sur les voies structurantes d’agglomérations d’Île-de-France .. 123
Soutenir l’élaboration et la mise en œuvre de plans locaux de déplacements et une meilleure prise en compte de la mobilité durable dans l’urbanisme .. 126
Accompagner la mise en place de zones à circulation restreinte en Île-de-France .. 129
Favoriser le covoiturage en Île-de-France .. 132
Accompagner le développement des véhicules à faibles émissions .. 135
Favoriser une logistique plus respectueuse de l’environnement .. 139
Favoriser l’usage des modes actifs .. 142

Fiche défi : mesures d’urgences
Réduire les émissions en cas d’épisode de pollution .. 145

Fiche défi : collectivités
Fédérer, mobiliser les collectivités et coordonner leurs actions en faveur de la qualité de l’air .. 148

Fiche défi : Conseil régional
Mettre en œuvre le plan 2016-2021 « Changeons d’air en Île-de-France » du Conseil régional d’Île-de-France .. 153

Fiche défi : actions citoyennes
Engager le citoyen francilien dans la reconquête de la qualité de l’air .. 157
LISTE DES TABLEAUX

Tableau 1 : Conformité de l’Île-de-France aux valeurs limites européennes en 2015 ... 11
Tableau 2 : Groupes de travail sectoriels 13
Tableau 3 : Les défis du plan de protection de l’athmosphère ... 14
Tableau 4 : Situation des différents polluants réglementés par rapport aux normes de qualité de l’air en 2020 15
Tableau 5 : Emissions des plates-formes aériennes en Île-de-France en 2014 ... 25
Tableau 6 : Emissions de l’agriculture en Île-de-France en 2014 ... 26
Tableau 7 : Les activités du secteur industriel ... 27
Tableau 8 : Emissions de l’industrie en Île-de-France en 2014 ... 28
Tableau 9 : Emissions du secteur résidentiel tertiaire et chantiers en Île-de-France en 2014 ... 28
Tableau 10 : Part des veh.km roulés en Île-de-France en 2014 (référence) ... 29
Tableau 11 : Emissions du transport routier, ferroviaire et fluvial en Île-de-France en 2014 ... 29
Tableau 12 : Emissions totales en Île-de-France en 2014 ... 30
Tableau 13 : Gain moyen* en espérance de vie à 30 ans (mois) en Île-de-France selon différents scénarios ... 36
Tableau 14 : Indicateurs d’impacts sanitaires de la pollution atmosphérique chronique en Île-de-France en 2015 ... 37
Tableau 15 : Les mesures du PPA de l’Île-de-France et leur état d’application à la fin 2015 ... 38
Tableau 16 : Mesures du PPA d’Île-de-France de 2013 et état d’avancement de leur réalisation fin 2015 ... 39
Tableau 17 : Mesures du PPA d’Île-de-France de 2013 conservées dans l’arrêté du PPA 2017 ... 40
Tableau 18 : Valeurs limites européennes, objectif de qualité, valeurs cibles, recommandations OMS ... 42
Tableau 19 : Conformité de l’Île-de-France aux valeurs limites européennes en 2015 ... 43
Tableau 20 : Part du trafic et des émissions par classe de véhicules ... 49
Tableau 21 : Évaluation prospective des émissions de l’aérien en Île-de-France en 2020 ... 50
Tableau 22 : Évaluation prospective des émissions de l’agriculture en Île-de-France en 2020 ... 51
Tableau 23 : Évaluation prospective des émissions de l’industrie en Île-de-France en 2020 ... 51
Tableau 24 : Évaluation prospective des émissions du secteur résidentiel tertiaire chantiers en Île-de-France en 2020 ... 52
Tableau 25 : Part des veh.km roulés en Île-de-France (référence et fil de l’eau) ... 53
Tableau 26 : Évaluation prospective des émissions du transport routier, ferroviaire et fluvial en Île-de-France en 2020 ... 53
Tableau 27 : Évaluation prospective des émissions totales en Île-de-France en 2020 selon le scénario fil de l’eau ... 54
Tableau 28 : Respect des valeurs limites en 2020 selon le scénario fil de l’eau ... 55
Tableau 29 : Groupes de travail sectoriels ... 56
Tableau 30 : Groupes de travail transversaux ... 56
Tableau 31 : Les défis du PPA ... 57
Tableau 32 : Évaluation prospective des émissions du résidentiel tertiaire/chantiers en 2020 avec le PPA ... 58
Tableau 33 : Part des veh.km roulés en Île-de-France (référence, fil de l’eau, PPA) ... 59
Tableau 34 : Évaluation prospective des émissions du transport routier en Île-de-France en 2020 avec le PPA ... 59
Tableau 35 : Évaluation prospective des émissions de l’industrie en Île-de-France en 2020 avec les mesures du PPA ... 60
Tableau 36 : Évaluation prospective des émissions de l’aérien en Île-de-France en 2020 avec les mesures du PPA ... 60
Tableau 37 : Évaluation prospective des émissions de l’agriculture en 2020 avec les mesures du PPA ... 60
Tableau 38 : Évaluation prospective des émissions totales en Île-de-France en 2020 avec les mesures du PPA ... 60
Tableau 39 : Conformité de l’Île-de-France aux valeurs limites européennes (modélisation 2020 + PPA) ... 62
Tableau 40 : Conformité de l’Île-de-France aux valeurs limites européennes ... 62
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Evolution du nombre de franciliens exposés à un dépassement des valeurs limites</td>
<td>15</td>
</tr>
<tr>
<td>2</td>
<td>Carte des espaces agricoles en Ile-de-France</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>Répartition des émissions par secteur (référence 2014)</td>
<td>30</td>
</tr>
<tr>
<td>4</td>
<td>Quantité de polluants émis (référence 2014)</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>Carte des stations de mesure du réseau Airparif</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>Concentration moyennes sur trois ans en PM$_{10}$ échantillon évolutif de stations</td>
<td>33</td>
</tr>
<tr>
<td>7</td>
<td>Concentration moyennes sur trois ans en NO$_2$, échantillon constant de stations</td>
<td>33</td>
</tr>
<tr>
<td>8</td>
<td>Nombre moyen de dépassements des seuils de qualité de l’air entre 2007 et 2016</td>
<td>34</td>
</tr>
<tr>
<td>9</td>
<td>Nombre de dépassements par an des seuils de qualité de l’air entre 2007 et 2016</td>
<td>35</td>
</tr>
<tr>
<td>10</td>
<td>Nombre de franciliens exposés à des dépassements de valeurs limites annuelles.</td>
<td>35</td>
</tr>
<tr>
<td>11</td>
<td>Les valeurs limites et seuils de la qualité de l’air</td>
<td>41</td>
</tr>
<tr>
<td>12</td>
<td>Stations en dépassement occasionnel de la valeur limite annuelle en PM$_{10}$ en 2015</td>
<td>43</td>
</tr>
<tr>
<td>13</td>
<td>Stations en dépassement des valeurs limites de NO$_2$ en Ile-de-France en 2015</td>
<td>43</td>
</tr>
<tr>
<td>14</td>
<td>Zones nationales de dépassements des valeurs limites en PM$_{10}$ en 2015</td>
<td>43</td>
</tr>
<tr>
<td>15</td>
<td>Zones nationales de dépassements des valeurs limites en NO$_2$ en 2015</td>
<td>43</td>
</tr>
<tr>
<td>16</td>
<td>Carte des dépassements des valeurs limites annuelles de NO$_2$, relevés en Europe</td>
<td>43</td>
</tr>
<tr>
<td>17</td>
<td>Articulation entre le PPA et les autres plans et schémas</td>
<td>45</td>
</tr>
<tr>
<td>18</td>
<td>Trafic routier sur les grands axes franciliens en 2020</td>
<td>47</td>
</tr>
<tr>
<td>19</td>
<td>Vignettes Crit’Air</td>
<td>48</td>
</tr>
<tr>
<td>20</td>
<td>Circulation différenciée et ZCR parisienne</td>
<td>49</td>
</tr>
<tr>
<td>21</td>
<td>Répartition des émissions par secteur (fil de l’eau 2020).</td>
<td>54</td>
</tr>
<tr>
<td>22</td>
<td>Evolution des concentrations moyennes annuelles de PM$_{10}$ en 2020 (fil de l’eau) sur les stations de proximité de trafic et de fond</td>
<td>55</td>
</tr>
<tr>
<td>23</td>
<td>Evolution des concentrations moyennes annuelles de PM$_{2.5}$ en 2020 (fil de l’eau) sur les stations de proximité de trafic et de fond</td>
<td>55</td>
</tr>
<tr>
<td>24</td>
<td>Evolution des concentrations moyennes annuelles de NO$_2$ en 2020 (fil de l’eau) sur les stations de proximité de trafic et de fond</td>
<td>55</td>
</tr>
<tr>
<td>25</td>
<td>Evolution du nombre de franciliens exposés à un dépassement des valeurs limites (fil de l’eau 2020)</td>
<td>56</td>
</tr>
<tr>
<td>26</td>
<td>Répartition des émissions par secteur (fil de l’eau 2020+PPA)</td>
<td>59</td>
</tr>
<tr>
<td>27</td>
<td>Evolution des concentrations moyennes annuelles de PM$_{10}$ en 2020 avec le PPA sur les stations de proximité de trafic et de fond</td>
<td>61</td>
</tr>
<tr>
<td>28</td>
<td>Evolution des concentrations moyennes annuelles de PM$_{2.5}$ en 2020 avec le PPA sur les stations de proximité de trafic et de fond</td>
<td>62</td>
</tr>
<tr>
<td>29</td>
<td>Evolution des concentrations moyennes annuelles de NO$_2$ en 2020 avec le PPA sur les stations de proximité de trafic et de fond</td>
<td>62</td>
</tr>
<tr>
<td>30</td>
<td>Evolution du nombre de franciliens exposés à un dépassement des valeurs limites (fil de l’eau + PPA)</td>
<td>63</td>
</tr>
<tr>
<td>31</td>
<td>Evolution des concentrations de PM$_{10}$ de 2007 à 2020</td>
<td>64</td>
</tr>
<tr>
<td>32</td>
<td>Evolution des concentrations de NO$_2$ de 2007 à 2020</td>
<td>65</td>
</tr>
</tbody>
</table>
ANNEXES

Consultables sur : https://www.maqualitedelair-idf.fr/

Annexe I - Glossaire
Annexe II - Les impacts sanitaires de la pollution de l’air
Annexe III - Le chauffage au bois en Île-de-France
Annexe IV - Bilan du PPA d’Île-de-France de 2013
Annexe V - Liens entre le PREPA et le PPA
Annexe VI - Conformité du PPA avec la directive 2008/50/CE
Annexe VII - Atlas cartographique
Annexe VIII - Efficacité de la mesure de circulation différenciée en cas de pic de pollution
Annexe IX - Note d’organisation de la révision du PPA
Annexe X - Analyse multicritère : méthode utilisée
Annexe XI - Méthode d’estimation des coûts directs des défis
Annexe XII - Estimation des impacts sanitaires : méthode et résultats
Annexe XIII - Analyse multicritère : résultats
Annexe XIV - Méthodologie détaillée du défi TRA1 : plans de mobilité
Annexe XV - Méthodologie détaillée du défi TRA2 : réduction de vitesse
Annexe XVI - Méthodologie détaillée du défi TRA3 : plans locaux de déplacement
Annexe XVII - Méthodologie détaillée du défi TRA4 : zones à circulation restreinte
Annexe XVIII - Méthodologie détaillée du défi TRA5 : covoiturage
Annexe XIX - Méthodologie détaillée du défi TRA6 : véhicules faibles émissions
Annexe XX - Méthodologie détaillée du défi TRA7 : logistique
Annexe XXI - Méthodologie détaillée du défi TRA8 : modes actifs
Annexe XXII - Méthodologie détaillée pour l’industrie
Annexe XXIII - Méthodologie détaillée utilisée pour agréger les défis transport
Annexe XXIV - Méthodologie détaillée pour l’aérien
Annexe XXV - Détails sur les fiches résidentiel-tertiaire
Annexe XXVI - Définition de la zone sensible pour la qualité de l’air
Annexe XXVII - Lien entre le PDUIF et le PPA
Annexe XXVIII - Méthodologie détaillée pour le secteur agricole
Annexe XXIX - La ZCR A86, un défi pour l’avenir ?
La pollution atmosphérique : enjeu sanitaire et environnemental

Malgré une amélioration notable de la qualité de l’air depuis les années 1990, la pollution atmosphérique constitue toujours un enjeu majeur de santé publique dont le coût s’élèvera à près de 7 milliards d’euros en 2020 en Île-de-France si aucune mesure supplémentaire n’est mise en œuvre. L’évaluation de l’impact de la pollution de l’air sur la santé humaine demeure difficile à appréhender. La pollution de l’air est un phénomène complexe, consécutif à l’association d’un grand nombre de substances, qui interagissent de façons variables entre elles et avec l’environnement qui les entoure.

Chaque individu ne pouvant se passer de respirer, l'exposition aux substances polluantes concerne l'ensemble de la population. Les enfants en bas âge, les personnes âgées, ainsi que les personnes souffrant de pathologies respiratoires et/ou cardiovasculaires sont les plus sensibles à l'altération de la qualité de l'air. Aujourd'hui, la surveillance de la qualité de l'air répond à des standards européens et les pays membres de l'Union Européenne sont sanctionnés lors de dépassements des seuils réglementaires.

Les polluants émis dans l’atmosphère par chacun de nous lors de nos activités professionnelles ou personnelles, ainsi que leur surveillance sont strictement encadrés juridiquement par les droits français, européen et international.

La pollution de l’air est aujourd’hui la seconde préoccupation environnementale des Français, après le réchauffement climatique ; le sujet est devenu l’une des priorités des pouvoirs publics. Pour protéger la santé des Français, des actions ambitieuses ont été mises en place au cours des dernières années aux niveaux national et régional, en combinant :

- Des mesures législatives et réglementaires avec la loi relative à la transition énergétique pour la croissance verte (LTECV) ainsi que la révision de l’arrêté inter-préfectoral pour la gestion des pics de pollution ;
- Des incitations financières et fiscales, avec une attention particulière apportée au développement de l’électro-mobilité et au retrait des véhicules les plus polluants, au rééquilibrage de la fiscalité entre le gazole et l’essence, à la mobilisation et l’accompagnement des collectivités grâce aux appels à projets ;
- Des actions d’amélioration des connaissances pour préparer l’avenir avec la saisine de l’ANSES ;

Un outil juridique régional pour une meilleure qualité de l’air

Le PPA a pour objet, dans un délai qu’il fixe, de ramener les concentrations en polluants à des niveaux en conformité avec les valeurs limites européennes.

Le PPA est le plan d’actions de l’Etat régional (Préfets) à mettre en œuvre pour une amélioration réelle de la qualité de l’air, tant en pollution chronique que pour diminuer le nombre d’épisodes de pollution. Le PPA d’Île-de-France a été révisé avant la période réglementaire de 5 ans afin d’accélérer la mise en place des dispositions de l’ancien PPA et de créer de nouvelles dispositions ciblant notamment les sources de pollution diffuses. Il prévoit des défis et actions ayant pour échéance 2020, afin

de ramener la qualité de l’air en dessous des valeurs limites européennes au plus tard en 2025.

Si l’ensemble des défis dispose d’un indicateur de suivi, leur impact sur la qualité de l’air n’est pas toujours évalué (actions de formation ou de communication par exemple). Lorsqu’il peut l’être, la modélisation repose sur des hypothèses (évolution du trafic par exemple).

La modélisation présentée dans le PPA vise à démontrer l’impact du seul PPA sur les concentrations en polluants ; elle ne tient pas compte du PREPA, du PDUIF ni des PCAET. Elle constitue donc uniquement un outil d’aide à la décision mais qui ne saurait constituer une prédiction de l’état de la qualité de l’air en 2020. Elles présentent cependant une tendance.

L’Île-de-France, région sujette aux dépassements des valeurs réglementaires

Le PPA couvre toute l’Île-de-France. Région la plus peuplée de France avec 12,1 millions d’habitants en 2015, elle représente environ 19% de la population française installée sur 0,4% du territoire.

En 2015, on compte 300 000 franciliens exposés à la pollution aux particules fines (PM$_{10}$) et 1,6 millions exposés au dioxyde d’azote (NO$_2$), contre respectivement 5,6 millions et 3,8 millions en 2007 (sur la base de la valeur limite journalière pour PM$_{10}$ et de la valeur limite annuelle pour NO$_2$). Malgré les efforts importants accomplis au cours des dernières années, les stations du réseau Airparif ont mesuré en 2015 des dépassements des valeurs limites réglementaires. Le NO$_2$ est un polluant local qui a une durée de vie limitée dans l’atmosphère (environ 1 journée) ; les particules PM$_{10}$ et PM$_{2.5}$ sont en suspension dans l’air, elles sont éliminées par la pluie ou en retombant naturellement au sol. En l’absence de précipitation, leur durée de vie peut aller de quelques heures à quelques jours ; loin des sources de pollution (trafic routier, chauffage au bois), la pollution aux particules très fines PM$_{2.5}$ provient majoritairement (68%) des régions voisines.

A la suite des dépassements pour ces deux polluants en Île-de-France et dans d’autres régions, la France a reçu 2 avis motivés de la Cour de justice de l’Union européenne pour non respect des valeurs limites en PM$_{10}$ et en NO$_2$ et insuffisance des plans d’action.

Tableau 1 : Conformité de l’Île-de-France aux valeurs limites européennes en 2015

| Valeur limite | NO$_2$ | PM$_{10}$ | PM$_{2.5}$ | O$_3$ | SO$_2$
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>horaire ou journalière</td>
<td>Respectée sur 21 stations de mesure</td>
<td>Respectée sur 18 stations de mesure</td>
<td>Respectée sur 5 stations de mesure</td>
<td>Pas de valeur limite</td>
<td>Pas de valeur limite</td>
</tr>
<tr>
<td>annuelle</td>
<td>Respectée sur 33 stations de mesure</td>
<td>Respectée sur 23 stations de mesure</td>
<td>Respectée sur 1 station de mesure</td>
<td>Respectée</td>
<td>Pas de valeur limite</td>
</tr>
</tbody>
</table>

Les grands enjeux franciliens pour une meilleure qualité de l’air

Bien que l’Île-de-France bénéficie d’une géographie favorable à la dispersion des polluants, des dépassements de valeurs limites sont relevés. Cette situation s’explique par la densité exceptionnelle de population et d’activités sur une partie du territoire dont l’urbanisme et l’aménagement ne favorisent pas la dispersion de polluants. Les densités d’activités et de population entraînent de fait des émissions de polluants importantes. L’urbanisme, avec des rues étroites et peu végétalisées empêche la dispersion des polluants liés au trafic routier. La concentration en polluants n’est pas homogène sur l’ensemble du territoire francilien, et ce, même au sein d’une même commune.

En 2015, près de 3 millions de journées de travail ont été perdues en Île-de-France suite à l’exposition à la pollution aux particules. Les impacts sanitaires de la pollution de l’air sont calculés sur la base de modèles qui permettent de croiser les concentrations en polluants, la répartition géographique de la population...
Selon son âge et des relations concentration-réponse issues d'études épidémiologiques.

Les valeurs limites européennes à respecter sont exprimées en concentrations maximales de polluants mais nous ne pouvons agir que sur les émissions.

Pour mieux cerner les principales activités émissives en Île-de-France, un inventaire des émissions de NOx, PM10, PM2,5, COVNM (composés organiques volatils non méthaniques) et NH3 a été réalisé. Il en ressort que tous les secteurs d’activités ont une responsabilité. Par ordre d’importance en Île-de-France :

> Secteur des transports (hors aérien)

Avec 61% des émissions de NOx en Île-de-France, le secteur des transports routiers est de loin le premier émetteur d’oxydes d’azote. Les rejets de particules fines PM10 et PM2,5 sont également significatifs avec respectivement 31% et 34% de l’ensemble des particules émises en Île-de-France issues de la combustion de carburant mais aussi des plaquettes de freins et de l’usure de la route. Le transport ferroviaire et fluvial contribue à hauteur de 1% des émissions de NOx.

> Secteur résidentiel-tertiaire

Ce secteur est l’émetteur le plus important en termes de particules fines avec 34% de l’ensemble des PM10 et 47% des PM2,5. De plus, une part significative des COVNM (39%) est émise par ce secteur. Il convient également de préciser que les activités de chantier liées à la construction ont une part non négligeable dans les émissions de PM10 (13%), de PM2,5 (8%) et COVNM (8%).

> Secteur industriel

L’industrie est un faible contributeur aux émissions régionales en termes de particules fines. La somme des émissions de particules liées au traitement des déchets, à l’industrie manufacturière et à la production d’énergie ne s’élève qu’à 6% de l’ensemble des émissions pour les PM10 et 4% pour les PM2,5. En revanche, ces mêmes branches industrielles ont eu un impact significatif, au regard des rejets de COVNM (31%) et dans une moindre mesure au vu des émissions de NOx (14%).

> Secteur aérien

7% de l’ensemble des émissions régionales d’oxydes d’azotes (NOx) sont émis par le secteur aérien, soit 9 fois moins que les autres modes de transport. Les émissions considérées sont celles du cycle LTO (landing and take off) : en effet, lorsque les aéronefs ne sont plus dans le cycle LTO, leur altitude est trop élevée pour que les polluants émis influencent les concentrations dans l’air ambiant en Île-de-France. Ce secteur aérien est le seul qui voit ses émissions légèrement augmenter entre 2014 et 2020 (environ 0,5% par an), avec une incertitude faible sur l’évolution du trafic. Paris et l’Île-de-France restent une destination touristique et économique de premier ordre au niveau mondial.

> Secteur agricole

L’agriculture en Île-de-France contribue à hauteur de 15% des PM10 sur le territoire. Si les émissions sont peu élevées pour les NOx (3%), voire inexistantes pour les COVNM, le secteur agricole se distingue par une part très importante des émissions de NH3 (93%), en grande partie due à la volatilisation lors des épandages d’engrais sur les terres.

Les émissions des secteurs des transports et du résidentiel-tertiaire proviennent de l’activité des services et des ménages. Ces derniers sont responsables de 35% des émissions de NOx et de 48% des émissions de PM10 (déplacements en véhicules particuliers ou 2 roues motorisées et chauffage individuel).

Entre 2012 et 2015, 156 M€ de crédit d’impôts transition énergétique (CITE) ont été alloués pour les équipements de chauffage au bois des ménages, 5,46 M€ ont été accordés par l’ADEME pour le déploiement des infrastructures de rechange des véhicules électriques et 127 M€ ont été alloués aux Franciliens pour l’achat de véhicules moins polluants.

À la fin de l’année 2015, sur 11 mesures réglementaires, 8 ont été totalement ou presque réalisées. Toutefois, la part d’établissements ayant effectué un plan de déplacement d’entreprises (PDE) est en deçà des objectifs fixés et ce PPA n’a pas réussi à réduire notablement les émissions de particules dues aux équipements individuels de combustion au bois et aux groupes électrogènes.
La concertation, mot d’ordre de la révision du PPA 2013

Les dépassements des valeurs limites observés ces dernières années montrent que les efforts entrepris jusqu’à présent doivent s’intensifier. Pour répondre à ce besoin, la révision du PPA s’est voulu plus participative associant les acteurs des secteurs concernés pour rechercher des mesures plus pragmatiques. C’est ainsi que 8 groupes de travail se sont réunis pour proposer des mesures envisageables.

Chaque groupe de travail (GT) a été présidé par des représentants des acteurs du domaine. Les différents groupes de travail ainsi que les organismes qui président ces derniers, sont mentionnés sur le tableau ci-dessous :

Tableau 2 : Groupes de travail sectoriels

<table>
<thead>
<tr>
<th>SECRÉTARIAT</th>
<th>PRÉSIDENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT agricole</td>
<td>DRIAAF Chambre d’agriculture de l’Ile-de-France</td>
</tr>
<tr>
<td>GT aérien</td>
<td>DGAC FNAM (Fédération nationale de l’Aviation Marchande)</td>
</tr>
<tr>
<td>GT industrie</td>
<td>DRTEE AIRASIF et UI (union des industries chimiques)</td>
</tr>
<tr>
<td>GT résidentiel/Tertiaire et chantiers</td>
<td>DRIHL UNICLIMA et FFB grand Paris</td>
</tr>
<tr>
<td>GT transports</td>
<td>DRIEA IDF (Ile-de-France mobilités) et Gatmarif (Groupement des activités de transports et de manutention de la région Ile-de-France)</td>
</tr>
<tr>
<td>Cellule santé</td>
<td>ARS Fédération Française de Pneumologie</td>
</tr>
<tr>
<td>GT collectivités</td>
<td>ADEME Ile-de-France Conseil Départemental du Val-de-Marne 94 et AMIF</td>
</tr>
<tr>
<td>GT actions citoyennes</td>
<td>SGAR FNE Ile-de-France (France Nature Environnement)</td>
</tr>
</tbody>
</table>

Une méthode d’analyse transversale pour sélectionner les défis à relever d’ici 2020

Ce troisième PPA propose de relever 25 défis déclinés en 46 actions, afin d’apporter des réponses adaptées aux enjeux de la qualité de l’air en Ile-de-France, l’inventaire des émissions de chaque secteur ayant permis de quantifier leurs contributions respectives.

Avec 8 défis déclinés en 20 actions, le secteur des transports est au cœur des enjeux de ce nouveau PPA, en raison de sa forte contribution aux émissions régionales. La mise en place de plans de mobilité pour les collectivités et les établissements publics sera accélérée, de même que le partage de la voirie via le développement des modes de transports actifs ainsi que le développement de l’usage des véhicules à faibles émissions. Le PPA comprend à la fois des mesures contraignantes et incitatives.

Le secteur industriel est le principal émetteur de particules fines en Ile-de-France, et au sein de ce secteur la quasi totalité de ces particules provient de la combustion de la biomasse (le bois, brûlé dans de mauvaises conditions, est une source d’énergie fortement émettrice de particules fines). Un programme de communication ainsi que des fonds publics seront mis en œuvre pour favoriser le renouvellement des équipements anciens de chauffage au bois et former les particuliers pour acquérir les bons gestes afin de limiter au maximum les émissions de particules (utilisation de foyers fermés ou d’inserts labellisés, d’essences de bois les moins émissives, de bois sec etc.).

Outre le chauffage individuel, la réduction des émissions liées à la construction est un enjeu important. La mise en place d’une charte globale pour les chantiers impliquant l’ensemble de la chaîne de valeur permettra de favoriser les bonnes pratiques et ainsi réduire les émissions.

Les quatre défis du secteur industriel s’intéressent à la réduction des émissions de particules et de NOₓ émises par les installations de combustion alimentées par de la biomasse et aux installations de traitement de déchets pour lesquelles les valeurs limites d’émissions imposées sont inférieures à la réglementation nationale.

L’ensemble des défis et des actions du secteur agricole est dédié à la limitation des émissions d’ammoniac (NH₃). Principale émettrice d’ammoniac, l’agriculture franci-
lien peut réduire ses émissions en favorisant les bonnes pratiques d’épandage, en formant les agriculteurs au cycle de l’azote et en communiquant sur les répercussions sur la qualité de l’air, de l’utilisation d’engrais, et par la mise en place de programmes de recherche pour évaluer l’impact du fractionnement des fertilisations. Le retour d’expérience sur l’usage de ce type d’ammoniac solide étant encore très limité, les mesures proposées sont davantage prospectives.

Les polluants émis par le secteur aérien sont majoritairement des oxydes d’azote. Afin de limiter ces émissions, le nouveau PPA prévoit une limitation de l’utilisation des groupes auxiliaires de puissance, destinés à produire de l’énergie à bord des avions lorsque ces derniers sont au sol. Une meilleure gestion des départs, ainsi que l’emploi d’engins moins polluants sont également prévus afin de contingenter au maximum les émissions lors des phases de roulage.

Enfin, le PPA prévoit des défis dans le domaine de la gouvernance. Une véritable gouvernance partagée est développée par les défis du PPA, afin de responsabiliser d’une part l’État et les collectivités dans la gestion des risques au quotidien et durant les épisodes de pollution, et d’engager d’autre part les citoyens et les entreprises dans la reconquête de la qualité de l’air.

Tableau 3 : Les défis du plan de protection de l’atmosphère

<table>
<thead>
<tr>
<th>DÉFIS ÉVALUABLES dont l’impact sur les émissions est quantifiable</th>
<th>DÉFIS NON-ÉVALUABLES dont l’impact sur les émissions n’est pas quantifiable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diminuer les émissions des aéronefs au roulage</td>
<td>Diminuer les émissions des APU et des véhicules et engins de pistes au sol</td>
</tr>
<tr>
<td>Favoriser les bonnes pratiques associées à l’utilisation de l’urée solide</td>
<td>Améliorer la connaissance des émissions des avions</td>
</tr>
<tr>
<td>Renforcer la surveillance des installations de combustion (2-50MW)</td>
<td>Former les agriculteurs au cycle de l’azote et à ses répercussions en termes de pollution atmosphérique</td>
</tr>
<tr>
<td>Réduire les émissions de NOₓ issues des installations d’incinération d’ordures ménagères ou de co-incinération de CSR</td>
<td>Évaluer l’impact du fractionnement du second apport sur céréales d’hiver sur les émissions de NH₃</td>
</tr>
<tr>
<td>Réduire les émissions de NOₓ des installations de combustion de biomasse (2-100MW) et des installations de co-incinération de CSR</td>
<td>Réduire les émissions de particules des installations de combustion à la biomasse et des installations de co-incinération de CSR</td>
</tr>
<tr>
<td>Favoriser le renouvellement des équipements anciens de chauffage individuel au bois</td>
<td>Élaborer une charte bois énergie impliquant l’ensemble de la chaîne de valeur (des professionnels au grand public) et favoriser les bonnes pratiques</td>
</tr>
<tr>
<td>Elaborer une charte chantiers propres impliquant l’ensemble des acteurs de la chaîne de valeur</td>
<td>Favoriser une logistique plus respectueuse de l’environnement</td>
</tr>
<tr>
<td>Accompagner la mise en place de zones à circulation restreinte en Île-de-France</td>
<td>Harmoniser à la baisse les vitesses maximales autorisées sur les voies structurantes d’agglomérations d’Île-de-France</td>
</tr>
<tr>
<td>Elaborer des plans de mobilité par les entreprises et les personnes morales de droit public</td>
<td>Soutenir l’élaboration et la mise en œuvre de plans locaux de déplacements et une meilleure prise en compte de la mobilité durable dans l’urbanisme</td>
</tr>
<tr>
<td>Favoriser le covoiturage en Île-de-France</td>
<td>Réduire les émissions en cas d’épisode de pollution</td>
</tr>
<tr>
<td>Accompagner le développement et l’usage des véhicules à faibles émissions</td>
<td>Fédérer, mobiliser les collectivités et coordonner leurs actions en faveur de la qualité de l’air</td>
</tr>
<tr>
<td>Favoriser l’usage de modes de transports actifs</td>
<td>Mettre en œuvre le plan « Changeons d’Air » du Conseil régional</td>
</tr>
<tr>
<td></td>
<td>Engager le citoyen francilien dans la reconquête de la qualité de l’air</td>
</tr>
</tbody>
</table>
Évaluation 2020 : une modélisation partielle des impacts du PPA

Les concentrations en polluants (PM$_{10}$, PM$_{2.5}$, NO$_2$ et O$_3$) ont été modélisées à horizon 2020 par Airparif sur la base des hypothèses fournies par chaque groupe de travail. Plusieurs scénarios ont été envisagés :

- un scénario de référence (2014),
- un scénario « fil de l’eau », simule les concentrations en 2020 en poursuivant l’application des mesures et réglementations déjà en place ;
- un scénario « fil de l’eau + PPA », simule les concentrations en 2020 en ajoutant les 12 défis évaluables du PPA : cette modélisation est donc partielle puisqu’elle ne prend pas en compte 13 des 25 défis nile PREPA, le PDUIF et les PCAET.

Il convient d’interpréter les résultats de ces modélisations avec prudence ; des choix résolument conservateurs ont été faits afin de privilégier une approche précautionneuse de l’évaluation des impacts du PPA. Les modélisations ne constituent pas des prévisions permettant de déterminer avec certitude le nombre et la localisation des dépassements de valeurs limites.

Le détail des résultats des modélisations est présenté dans un rapport spécifique d’Airparif*. Ces travaux permettent avant tout de modéliser l’impact de 12 défis du PPA et de comparer les 3 scénarisations entre elles.

Tableau 4 : Situation des différents polluants réglementés par rapport aux normes de qualité de l’air en Île-de-France en 2020

<table>
<thead>
<tr>
<th>Valeur limite</th>
<th>NO$_2$</th>
<th>PM$_{10}$</th>
<th>PM$_{2.5}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>horaire ou</td>
<td>Non modélisable</td>
<td>Respectée en fond</td>
<td>Pas de valeur limite</td>
</tr>
<tr>
<td>journalière</td>
<td></td>
<td>Dépassée en proximité de trafic mais en diminution</td>
<td></td>
</tr>
<tr>
<td>annuelle</td>
<td>Respectée en fond Dépassée en proximité de trafic mais baisse des concentrations</td>
<td>Respectée en fond Respectée en proximité de trafic</td>
<td>Respectée</td>
</tr>
</tbody>
</table>

L’amélioration de la qualité de l’air est plus visible lorsque l’on s’intéresse à l’exposition des citoyens. Comme toutes les actions du PPA ne sont pas modélisables, il n’est pas surprenant que quelques franciliens restent, dans les calculs, exposés à des dépassements des valeurs limites, malgré une très nette amélioration de la qualité de l’air grâce à la mise en œuvre de 12 des 25 défis du PPA.

Figure 1 : Evolution du nombre de franciliens exposés à un dépassement des valeurs limites

Pour aller plus loin, une modélisation de l’impact sanitaire de la pollution de l’air sur les Franciliens et de l’amélioration attendue par 12 des 25 défis du PPA a été réalisée. Cette modélisation a démontré que les 12 défis évaluables du PPA permettent de ne pas perdre plus de 4 000 années de vie et 131 000 journées de travail, soit un peu plus de 5 % de ce qui est perdu en Ile-de-France en raison de l’exposition à une pollution aux particules non nulle ; en

termes de décès prématurés évités, ce sont plus de 200 morts prématurés qui sont évités grâce aux 12 défis du PPA, soit 5 % des 4 600 décès prématurés attribuables à l’exposition aux particules fines. Les gains sont nettement plus importants en NOx puisqu’ils permettent de diminuer de plus de 10 % les conséquences sanitaires de l’exposition. Ces éléments démontrent par ailleurs que le respect des valeurs limites du PPA ne suffit pas à répondre à l’enjeu sanitaire, et qu’une fois que les valeurs limites seront respectées, il faudra poursuivre nos efforts pour améliorer la qualité de l’air pour la santé des Franciliens.

Conclusion

Ce PPA est approuvé par arrêté interpréfectoral. L’arrêté prévoit d’imposer les mesures conservées de l’ancien PPA et de nouvelles mesures réglementaires issues des 25 défis : nouvelles valeurs limites d’émission pour certaines installations classées et généralisation de l’obligation de réaliser des plans de mobilité à l’ensemble des administrations et établissements publics.

Les modélisations réalisées permettent par ailleurs de démontrer que la situation de fond sera, en 2020, conforme aux valeurs limites européennes. Douze défis, sur les 25 du PPA, permettent de diviser par 9 le nombre de Franciliens exposés à des dépassements des valeurs limites par rapport à 2014 et de contenir les dépassements à proximité des axes routiers. Comme tout exercice prospectif, ces résultats sont à manipuler avec précaution.

Les dépassements de la valeur limite annuelle en dioxyde d’azote et de la valeur limite journalière en particules PM_{10} qui demeurent sur les stations en proximité du trafic à la suite de la modélisation devront être examinés au cas par cas par les collectivités concernées dans le cadre des plans climat air énergie territoriaux (PCAET). Ces collectivités pourront décider, notamment, de renforcer les mesures de restrictions de circulation.

13 défis du PPA n’ont pu être modélisés en raison de l’impossibilité de quantifier avec précision leur impact sur la qualité de l’air. Parmi ces défis non modélisés, la communication et la sensibilisation, déjà engagées, sont l’une des clefs du nécessaire changement de nos comportements, de notre appréhension de la mobilité et du chauffage individuel au bois.

La monétarisation de ces impacts sanitaires indique qu’en 2020 le coût de la pollution de l’air sans PPA sera de 7 milliards d’euros, soit plus de 1% du PIB de la région. La mise en œuvre des défis évaluables du PPA coûte à la société 327 M€ et engendrent un bénéfice de 387 M€ lié uniquement à la diminution des impacts sanitaires. Les bénéfices sanitaires compensent largement les coûts de mise en œuvre des actions nécessaires à la reconquête de la qualité de l’air.

Par ailleurs, de nombreuses actions, qui ne sont pas explicitement recensées dans le PPA, sont autant de contributions positives à l’amélioration de la qualité de l’air. C’est le cas des PCAET dont les volets « air » participeront à l’atteinte des objectifs du PPA. La modélisation ne tient pas compte, non plus, des défis du Plan de Déplacements Urbains de l’Île-de-France, de toutes les actions des collectivités locales autres que les PCAET, des actions nationales portées par le Plan de Réduction des Emissions de Polluants Atmosphériques (PREPA), des innovations qui pourraient être déployées d’ici 2020.

Conformément à l’article R222-15 du Code de l’environnement, la modélisation proposée ici a pour unique but d’évaluer l’impact du seul PPA sur la qualité de l’air.

Ainsi, la modélisation effectuée permet de montrer des gains substantiels qui pourraient être démultipliés si la zone à circulation restreinte de Paris était étendue.

La mise en œuvre de tous les défis du PPA d’ici 2020, ainsi que des PCAET, du PDUIF et du PREPA permettront de respecter les valeurs limites d’ici 2025.

Le respect de ces valeurs limites ne garantit pas l’absence d’impact sanitaire. Le PPA permet de réduire de 15% le nombre de morts prématurés ; son coût de mise en œuvre est inférieur au gain sanitaire monétisé. La mise en œuvre du PPA conduit à un bénéfice net pour la société de 57 M€.

Ce PPA est une action collective pour la reconquête de la qualité de l’air en Île-de-France et la protection de la santé des Franciliens : nous sommes tous, au quotidien et dans nos habitudes, les ambassadeurs du PPA.
<table>
<thead>
<tr>
<th>INTITULÉ DU DÉFI</th>
<th>ACTIONS</th>
<th>Evaluation multicritère</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aérien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AE1</td>
<td>Diminuer les émissions des APU et des véhicules et engins de pistes au sol.</td>
<td>Action 1 : Limiter l’utilisation des Auxiliaires de Puissances Unitaires (APU).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action 2 : Favoriser l’utilisation de véhicules et d’engins de piste moins polluants, afin d’en augmenter la proportion.</td>
</tr>
<tr>
<td>AE2</td>
<td>Diminuer les émissions des aéronefs au roulage.</td>
<td>Action 1 : Mettre en place à Paris-Orly la GLD (Gestion Locale des Départs).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action 2 : Favoriser le roulage N-1 (ou N-2) moteur(s).</td>
</tr>
<tr>
<td>AE3</td>
<td>Améliorer la connaissance des émissions des avions.</td>
<td>Action 1 : Communication des émissions, lors du cycle LTO, par couple type avion/moteur sur les aéroports de Paris-Orly, Paris-CDG et la part de chaque couple dans le trafic et les émissions.</td>
</tr>
<tr>
<td>Agriculture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AGR1</td>
<td>Favoriser les bonnes pratiques associées à l’utilisation d’urée solide pour limiter les émissions de NH₃.</td>
<td>Action 1 : Favoriser les bonnes pratiques pour l’évitement des émissions de NH₃ liées à l’usage d’urée solide en s’appuyant sur les activités de conseil et développement des chambres d’agriculture.</td>
</tr>
<tr>
<td>AGR2</td>
<td>Former les agriculteurs au cycle de l’azote et à ses répercussions en termes de pollution atmosphérique.</td>
<td>Action 1 : Mettre en place des formations sur le cycle de l’azote et les bonnes pratiques qui en découlent.</td>
</tr>
<tr>
<td>AGR3</td>
<td>Évaluer l’impact du fractionnement du second apport sur céréales d’hiver sur les émissions de NH₃.</td>
<td>Action 1 : Mettre en place un programme de recherche.</td>
</tr>
<tr>
<td>Industrie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IND1</td>
<td>Renforcer la surveillance des installations de combustion de taille moyenne (2 à 50 MW).</td>
<td>Action 1 : Réaliser un inventaire des installations soumises à déclaration et assurer une large information et sensibilisation des exploitants sur la réglementation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action 2 : Mettre en place un plan d’actions visant à renforcer le contrôle des installations de combustion de 2 à 50 MW.</td>
</tr>
<tr>
<td>IND2</td>
<td>Réduire les émissions de particules des installations de combustion à la biomasse et des installations de co-incinération de CSR.</td>
<td>Action 1 : Modifier l’arrêté inter-préfectoral relatif à la mise en œuvre du Plan de Protection de l’Atmosphère révisé pour séviriser les normes d’émission de particules pour n’autoriser que 15 mg/Nm³ à 6% d’O₂.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Action 2 : S’assurer de l’application des VLE en poussières renforcées pour les nouvelles installations de combustion de biomasse ou de co-incinération de CSR.</td>
</tr>
<tr>
<td>INTITULÉ DU DÉFI</td>
<td>ACTIONS</td>
<td>Evaluation multicritère</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>------------------------</td>
</tr>
<tr>
<td>Industrie</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| IND3 | Réduire les émissions de NOx, issues des installations d’incinération d’ordures ménagères ou de co-incinération de CSR. | Action 1 : Sévérer les normes d’émission d’oxydes d’azote des installations d’incinération d’ordures ménagères et de co-incinération de CSR pour n’autoriser que 80 mg/m³ en moyenne journalière et 200 mg/m³ en moyenne semi-horaire à 11% d’O₂.
Action 2 : Au vu des ETE, modifier par arrêté préfectoral complémentaire la réglementation de l’installation pour imposer les nouvelles VLE du PPA révisé et fixer le délai de mise en conformité.
Action 3 : S’assurer de l’application des VLE en NOx renforcées pour les nouvelles installations de co-incinération de CSR ou les reconstructions d’UIOM. | ![] |
| IND4 | Réduire les émissions de NOx des installations de combustion à la biomasse entre 2 et 100 MW et des installations de co-incinération de CSR. | Action 1 : Sévérer les normes d’émission d’oxydes d’azote des installations de combustion de biomasse, associée ou non à la co-incinération de CSR, pour n’autoriser que 200 mg/m³ à 6% d’O₂.
Action 2 : S’assurer de l’application des VLE en NOx renforcées pour les nouvelles installations de combustion de biomasse, que cette combustion soit associée ou non à la co-incinération de CSR. | ![] |
| **Résidentiel-tertiaire-chantiers** | | |
| RES1 | Favoriser le renouvellement des équipements anciens de chauffage individuel au bois. | Action 1 : Informer et faire connaître les aides financières pour le renouvellement des équipements anciens de chauffage individuel au bois.
Action 2 : Inciter les collectivités à mettre en place un fonds de renouvellement des équipements individuels de chauffage au bois via des dispositifs d’aides existants (appel à projet Fonds Air de l’ADEME, Fonds Air Bois du Conseil régional d’Île-de-France notamment). | ![] |
| RES2 | Élaborer une charte bois-énergie impliquant l’ensemble de la chaîne de valeurs (des professionnels au grand public) et favoriser les bonnes pratiques. | Action 1 : Préparer et communiquer autour d’une charte bois-énergie globale (fabricants, distributeurs, maîtres d’ouvrage, maîtres d’œuvre, collectivités, etc.).
Action 2 : Réaliser et diffuser une plaquette d’information à l’attention du grand public sur les impacts en termes de pollution atmosphérique des appareils de chauffage au bois et sur les bonnes pratiques à adopter lors de leur utilisation. | - |
| RES3 | Élaborer une charte globale chantiers propres impliquant l’ensemble des acteurs (des maîtres d’ouvrage aux maîtres d’œuvre) et favoriser les bonnes pratiques. | Action 1 : Élaborer une charte globale chantiers propres prenant en compte tous les acteurs intervenant dans un chantier (industriels, distributeurs, propriétaires de parcs d’engins, maîtres d’ouvrage, maîtres d’œuvre, etc.). | - |
| **Transports** | | |
| TRA1 | Élaborer des plans de mobilité par les entreprises et les personnes morales de droit public. | Action 1 : Étendre l’obligation de réalisation d’un plan de mobilité aux personnes morales de droit public franciliennes et définir le contenu des plans de mobilité.
Action 2 : Accompagner l’élaboration et la mise en œuvre des plans de mobilité.
Action 3 : Faciliter le dépôt et le suivi des plans de mobilité. | ![] |
<p>| TRA2 | Apprécier les impacts d’une harmonisation à la baisse des vitesses maximales autorisées sur les voies structurantes d’agglomérations d’Île-de-France | Action 1 : Évaluer les impacts d’une harmonisation à la baisse des vitesses sur 5 tronçons autoroutiers et routiers nationaux | - |</p>
<table>
<thead>
<tr>
<th>INTITULÉ DU DÉFI</th>
<th>ACTIONS</th>
<th>Evaluation multicritère</th>
</tr>
</thead>
<tbody>
<tr>
<td>TRA3 Transports</td>
<td>Soutenir l’élaboration et la mise en œuvre de plans locaux de déplacements et une meilleure prise en compte de la mobilité durable dans l’urbanisme.</td>
<td>Action 1 : Relancer collectivement les Plans Locaux de Déplacement (PLD).
 Action 2 : Favoriser une meilleure prise en compte des enjeux de mobilité durable dans l’urbanisme.</td>
</tr>
<tr>
<td>TRA4 Transports</td>
<td>Accompagner la mise en place de zones à circulation restreinte en Île-de-France.</td>
<td>Action 1 : Finaliser et mettre en œuvre les actions de la convention Villes Respirables en 5 ans.</td>
</tr>
<tr>
<td>TRA5 Transports</td>
<td>Favoriser le covoiturage en Île-de-France.</td>
<td>Action 1 : Favoriser le développement du covoiturage en Île-de-France.
 Action 2 : Étudier l’opportunité d’ouvrir aux covoitureurs d’utiliser les voies dédiées aux bus sur le réseau routier national et autres voies.</td>
</tr>
<tr>
<td>TRA6 Transports</td>
<td>Accompagner le développement des véhicules à faibles émissions.</td>
<td>Action 1 : Installer des bornes électriques dans les parcs relais afin de développer l’usage des véhicules électriques.
 Action 2 : Inciter les communes à mettre en place des politiques de stationnement valorisant les véhicules les moins polluants.
 Action 3 : Créer une plate-forme régionale de groupement de commandes de véhicules à faibles émissions pour les PME / PMI.</td>
</tr>
<tr>
<td>TRA7 Transports</td>
<td>Favoriser une logistique durable plus respectueuse de l’environnement.</td>
<td>Action 1 : Préserver les sites à vocation logistique.
 Action 2 : Fournir un modèle type de charte de logistique urbaine à l’ensemble des collectivités.
 Action 3 : Mettre à jour la stratégie régionale d’orientation pour soutenir le transport de marchandises longue distance raisonnable et durable.</td>
</tr>
<tr>
<td>TRA8 Transports</td>
<td>Favoriser l’usage des modes actifs.</td>
<td>Action 1 : Publier un recueil de bonnes pratiques pour la mise en place d’aides à l’achat de vélos, vélos à assistance électrique et triporteurs.</td>
</tr>
<tr>
<td>MU Mesures d’urgence</td>
<td>Réduire les émissions en cas d’épisode de pollution.</td>
<td>Action 1 : Mettre en place un dispositif de partage des différents retours d’expérience des épisodes de pollution.
 Action 2 : Réduire la liste des dérogations à la mesure de circulation différenciée.
 Action 3 : Mettre à jour les listes de diffusion des messages adressés pendant les pics de pollution, et sensibiliser ceux qui les reçoivent pour qu’ils les transmettent le plus largement possible.</td>
</tr>
<tr>
<td>COLL1 Collectivités</td>
<td>Fédérer, mobiliser les collectivités et coordonner leurs actions en faveur de la qualité de l’air.</td>
<td>Action 1 : Définition et mise en place d’une instance de coordination, de suivi et d’évaluation des actions « qualité de l’air » relevant des collectivités franciliennes.
 Action 2 : Définition et mise en place d’une instance régionale de partage technique entre collectivités.
 Action 3 : Expérimentation et essaimage des systèmes d’agriculture territorialisés.</td>
</tr>
<tr>
<td>REG Région</td>
<td>Mettre en œuvre le plan 2016-2021 « Changeons d’air en Île-de-France » du Conseil régional d’Île-de-France.</td>
<td>Action 1 : Mettre en œuvre le Fonds Air-Bois en Île-de-France.</td>
</tr>
<tr>
<td>AC Actions citoyennes</td>
<td>Engager le citoyen francilien dans la reconquête de la qualité de l’air.</td>
<td>Action 1 : Définir et diffuser les 10 éco-gestes que chaque citoyen peut mettre en œuvre pour réduire les émissions polluantes dans sa vie quotidienne.</td>
</tr>
</tbody>
</table>
1 Introduction

Pour vivre, nous avons besoin de plus de 10 000 litres d’air chaque jour. En moyenne, cet air est composé de : 78% de diazote (N₂), 21% de dioxygène (O₂), 1% d’autres gaz (CO₂ et gaz rares) et de polluants sous forme gazeuse ou solide. Naturellement présents dans l’atmosphère (ils sont par exemple émis par les volcans ou par les végétaux), les polluants sont également émis, en plus ou moins grande quantité selon les sources d’émission, par nos activités humaines (transports, chauffage, industrie, agriculture…).

La pollution de l’air se caractérise par la présence dans l’air ambiant de ces polluants. Elle doit se comprendre sous 2 angles : la pollution chronique (exposition de longue durée à des concentrations relativement faibles), et la pollution exceptionnelle, lors des épisodes ou pics de pollution (exposition de courte durée à des concentrations pouvant être élevées).

Les impacts sur la santé humaine ou sur la végétation sont principalement liés à l’exposition à la pollution chronique de la population ou des écosystèmes.

Des valeurs réglementaires adaptées définissent les concentrations à respecter pour lutter contre les deux aspects de cette pollution : la pollution chronique est encadrée par des « valeurs limites » à ne pas dépasser en tous lieux du territoire et les épisodes de pollution sont déclenchés par des dépassements de « seuils ».

La qualité de l’air en Île-de-France s’améliore : en 2015, on compte 300 000 franciliens exposés à un dépassement de la valeur limite acceptable en particules fines PM₁₀ et 1,6 M exposés au dioxyde d’azote NO₂, contre respectivement 5,6 M et 3,8 M en 20071 (sur la base de la valeur limite journalière pour PM₁₀ et de la valeur limite annuelle pour NO₂). Les efforts entrepris par tous, dans tous les secteurs, ont permis cette amélioration.

Cependant, en 2015, les conséquences de la pollution de l’air sur la santé et l’économie en Île-de-France restent préoccupantes : plus de 5000 morts prématurés et près de 8 milliards d’euros.

En 2015, les stations du réseau Airparif ont mesuré des dépassements ponctuels des valeurs limites réglementaires. Afin de ne plus observer ces dépassements, une action locale plus forte est nécessaire : l’Île-de-France a arrêté son premier PPA en 2006, l’a révisé en 2013 et le révise à nouveau depuis 2016 pour une reconquête de la qualité de l’air plus intense et plus rapide.

Le PPA, dont l’élaboration est encadrée dans le Code de l’environnement, se concentre sur les polluants réglementés par la Commission Européenne dont les concentrations sont encore trop élevées par rapport aux valeurs limites : particules PM₁₀ et dioxyde d’azote (NO₂). Cette troisième version du PPA francilien a été voulue concrète, pragmatique et réaliste car il est indispensable qu’elle prenne en compte les compétences et ressources des différents acteurs régionaux. C’est pourquoi elle s’organise en 25 défis à mener dans tous les secteurs dont le déploiement est détaillé dans 46 actions opérationnelles.

La compétence en matière de qualité de l’air est une compétence partagée. Il revient à chacun de prendre ses responsabilités et d’exercer pleinement les compétences confiées par la loi. Arrêté par les préfets d’Île-de-France, le PPA vise aussi à développer des synergies fortes entre les actions déployées par l’Etat, les collectivités, et tous les acteurs, synergies indispensables pour lutter efficacement contre la pollution atmosphérique.

Ce plan doit donc permettre à chacun de s’emparer de la thématique de la reconquête de la qualité de l’air et d’agir à son niveau, afin que nous soyons tous de réels acteurs de l’amélioration de l’air que nous respirons. Pour cela, le plan a été établi sur la base du travail de huit groupes thématiques et transverses, rassemblant les spécialistes et les acteurs de chaque domaine : aérien, agricole, industrie, résidentiel-tertiaire, transport, santé, collectivités et actions citoyennes. Après avoir dressé un état des lieux de la qualité de l’air en Île-de-France, ce document présente le plan d’actions et ses impacts sur la qualité de l’air en 2020.

1. Bilan de la qualité de l’air en Île-de-France en 2015, AIRPARIF
2 Des polluants émis par tous les secteurs

Afin de comptabiliser les polluants qui sont émis par les activités anthropiques sur l’ensemble du territoire de l’Île-de-France, un inventaire est réalisé qui répertorie, selon une méthodologie nationale, les polluants émis par l’ensemble des Franciliens : c’est l’inventaire des émissions. L’inventaire prend en compte uniquement les particules primaires (émises directement dans l’atmosphère lors de la combustion des carburants, par l’abrasion des pneumatiques et des plaquettes de freins, ou encore par la remise en suspension des dépôts sur la chaussée), et ne comptabilise pas les particules fines, dites secondaires, qui se forment à la suite de transformations chimiques dans l’atmosphère impliquant l’ammoniac (NH₃) et les oxydes d’azote ou de soufre (SO₂ ou NOₓ).

Le dernier inventaire publié par Airparif date de 2012. Dans le cadre de la révision du PPA, il a été mis à jour pour 2014 avec une évolution méthodologique. Après la présentation de cet inventaire des émissions, secteur par secteur, du réseau des stations de mesure des concentrations de polluants et des grands principes des modélisations permettant de simuler les concentrations de polluants, la deuxième partie présente les concentrations de polluants modélisées à l’horizon 2020, sans puis avec les défis du Plan de protection de l’atmosphère. Chaque défi ainsi que ses actions de mise en œuvre est ensuite détaillé.

2.1 Les polluants concernés

Les chiffres présentés dans les figures suivantes ont été revus et ajustés dans le cadre de l’élaboration de l’inventaire 2014. Ils diffèrent donc des chiffres présentés au chapitre 2.3.

Le terme « particules » recouvre de nombreux composés aérosols assimilables à des poussières en suspension, des éléments solides que l'on retrouve dans l'air ambiant.

- **Les PM_{10}** sont des particules de diamètre inférieur à 10 micromètres. Elles sont retenues au niveau du nez et des voies aériennes supérieures.
- **Les PM_{2.5}** sont des particules de diamètre inférieur à 2,5 micromètres. Elles pénètrent profondément dans l'appareil respiratoire jusqu'aux alvéoles pulmonaires.
- **Les PM_{1.0}** sont des particules de diamètre inférieur à 1 micromètre. Elles pénètrent jusqu'aux alvéoles pulmonaires et peuvent passer dans le sang.

Qualité de l’air

PARTICULES FINES EN ÎLE-DE-FRANCE

Les activités humaines génèrent des particules de tailles et de compositions différentes, qui peuvent avoir des effets importants sur la santé humaine.

DÉFINITION

Le terme « particules » recouvre de nombreux composés aérosols assimilables à des poussières en suspension, des éléments solides que l'on retrouve dans l'air ambiant.

DE QUELS SECTEURS VIENNENT-ELLES ?

Les particules ont des origines diverses. Voici quelques secteurs et leurs contributions aux émissions de particules fines en Île-de-France :

- **PM_{10}**
 - **Trafic routier** : 28% des émissions PM_{10}.
 - **Résidentiel et tertiaire** : 26% des émissions PM_{10}.
 - **Agriculture** : 18% des émissions PM_{10}.
 - **Industries** : 18% des émissions PM_{10}.

- **PM_{2.5}**
 - **Trafic routier** : 40% des émissions PM_{2.5}.
 - **Résidentiel et tertiaire** : 39% des émissions PM_{2.5}.
 - **Agriculture** : 40% des émissions PM_{2.5}.
 - **Industries** : 6% des émissions PM_{2.5}.

- **PM_{1.0}**
 - **Trafic routier** : 40% des émissions PM_{1.0}.
 - **Résidentiel et tertiaire** : 49% des émissions PM_{1.0}.
 - **Agriculture** : 2% des émissions PM_{1.0}.
 - **Industries** : 7% des émissions PM_{1.0}.

LE SAVIEZ-VOUS ?

Il existe 2 catégories de particules :

- **les primaires**, directement issus des sources de pollution.
- **les secondaires**, qui se forment par transformation chimique des polluants primaires dans l’air.
Les oxydes d’azote (NO\textsubscript{x})

Les polluants atmosphériques sont nombreux dans notre environnement. Presque essentiellement générés par les activités humaines, certains sont problématiques car ils dépassent régulièrement en Île-de-France les normes de qualité de l’air, c’est le cas des oxydes d’azote.

Définition

Les oxydes d’azote (NO\textsubscript{x}) sont émis lors de la combustion (chauffage, production d’électricité, moteurs thermiques des véhicules). Ils peuvent se former par combinaison de l’azote et de l’oxygène de l’air, par oxydation d’un produit azoté (présent dans certains combustibles) à haute température.

Effets sur la santé humaine
À forte concentration, le dioxyde d’azote est un gaz toxique et irritant pour les yeux et les voies respiratoires. C’est surtout parce qu’il est combiné à divers autres polluants dans l’air que nous respirons qu’il devient dangereux. On le suspecte d’entraîner des altérations respiratoires chez les asthmatiques et les enfants.

Effets sur les écosystèmes
C’est l’un des parents chimiques de l’ozone troposphérique (celui qui se forme à basse altitude, dans l’air que nous respirons). Il contribue aussi aux phénomènes des pluies acides. Enfin, même si les dépôts d’azote possèdent un certain pouvoir nutritif pour les plantes, il est avéré qu’à long terme et en excès, il entraîne un déséquilibre nutritif dans le sol qui se répercute ensuite sur les végétaux.

D’où viennent-ils ?

Le trafic routier
56% des NO\textsubscript{x}, Les émissions de NO du trafic routier en Île-de-France sont principalement dues aux émissions directes des véhicules à motorisation diesel.

Le secteur résidentiel
18% des NO\textsubscript{x}, Dans les habitations et les bâtiments les appareils à combustion (chauffage, cuisson, production d’eau chaude) sont les principaux émetteurs d’oxydes d’azote.

Le secteur aérien
7% des NO\textsubscript{x}, Les activités sur les plates-formes aéroportuaires ainsi que les cycles de décollage et atterrissage des avions sont le troisième contributeur aux émissions de NO\textsubscript{x} en Île-de-France.

(Source : Airparif – émissions 2012)
2.2 Les risques sanitaires à court et à long terme

De nombreuses études épidémiologiques ont établi l’existence d’effets sanitaires de la pollution atmosphérique sur la mortalité ou la morbidité. Deux types d’effets ont pu être mis en évidence : des effets à court terme, qui surviennent quelques jours ou quelques semaines après l’exposition et des effets à long terme qui font suite à une exposition chronique sur plusieurs mois ou plusieurs années. La cellule santé ayant participé aux travaux de révision du PPA a publié une note complète qui se trouve en annexe II.

Les effets de l’exposition de court terme

Les effets à court terme de la pollution atmosphérique se produisent dans les heures, jours et semaines suivant l’exposition. Il peut s’agir d’effets bénins (toux, hypersécrétion nasale, expectoration, essoufflement, irritation nasale des yeux et de la gorge…) ou plus graves selon la vulnérabilité des personnes. En Île-de-France, le programme Erpurs (Evaluation des risques de la pollution urbaine sur la santé) étudie depuis 1990 les relations à court terme existant entre la pollution atmosphérique francilienne et la santé. Les résultats de ce programme confirment l’impact sanitaire de la pollution atmosphérique. Une hausse des concentrations relativement faible entraîne un excès de risque de l’ordre de 1% pour la mortalité et de 4% pour les hospitalisations.

Les effets de l’exposition sur le long terme

La majeure partie des impacts de la pollution atmosphérique sur la santé résultent surtout d’une exposition au jour le jour, à long terme. En effet, par différents mécanismes, l’exposition à la pollution de l’air, notamment aux particules fines, contribue au développement de pathologies chroniques telles que des maladies cardiovasculaires, respiratoires ou encore neurologiques, et des cancers. Elle favorise également des troubles de la reproduction et du développement de l’enfant. Elle aggrave aussi les symptômes de maladies chez des personnes souffrant de pathologies chroniques. Elle pourrait avoir un rôle dans le risque de survenue de pathologies neurodégénératives (Alzheimer, Parkinson…).

De la définition de seuils d’exposition

Que ce soit à court ou à long terme, les résultats des études épidémiologiques sous-tendent l’absence d’effet de seuil de la pollution aux particules fines. L’OMS donne des recommandations de concentrations de polluants pour un air sain tandis que l’Union Européenne a fixé des valeurs limites moins contraignantes devant être respectées.

Cas des personnes vulnérables

Chacun est concerné par l’exposition à la pollution atmosphérique, toutefois certaines personnes sont plus vulnérables ou plus sensibles à une altération de la qualité de l’air : il s’agit des enfants, des femmes enceintes (exposition in utero du fœtus), des personnes âgées ou déjà fragilisées par une pathologie respiratoire ou cardiovasculaire préexistante.

L’ORS Île-de-France a réalisé une Évaluation quantitative de l’impact sanitaire (EQIS) de la proximité au trafic routier. Il a été estimé que près d’un tiers des habitants de Paris et proche couronne résidaient à moins de 75 mètres d’un axe routier (Insee RP 2006, IGN, IAU Île-de-France). Les résultats de cette EQIS indiquent que cette proximité aux axes à fort trafic routier était responsable de 16% des nouveaux cas d’asthme chez les enfants et d’environ 650 hospitalisations évitables chaque année.

Deux études britanniques (McCreanor, 2007 et Sinharay, 2013) démontrent que l’exposition à proximité du trafic routier entraîne chez les patients asthmatiques ou porteurs de bronchopatie chronique obstructive une dégradation significative de la fonction respiratoire par rapport à la même activité en milieu moins pollué.

2.3 Les émissions de polluants en Île-de-France

Les polluants sont émis par des phénomènes naturels (éruptions volcaniques, feux de forêts, embruns marins par exemple), mais surtout, dans des proportions variées, par toutes nos activités humaines.

La végétation peut influencer la qualité de l’air positivement (absorption de polluants, écrans) et négativement (limitation de la dispersion, émissions de COV). Selon l’INRA, en milieu urbain, les effets se compensent et l’influence est marginale.

Pour recenser l’ensemble des émissions du territoire francilien, la méthodologie employée, conforme à la méthodologie nationale, consiste à recenser les niveaux d’activités (consommation de combustibles par exemple), que l’on multiplie ensuite par des facteurs d’émissions adaptés afin de connaître les quantités totales de polluants émises. Les facteurs d’émission sont des coefficients, déterminés par exemple à partir de mesures à la source ou en laboratoire, qui représentent la quantité de polluant émise par unité d’activité (par exemple, quantité de particules émises par kilogramme de bois brûlé).

Les inventaires (ou cadastres) d’émissions sont réalisés par Airparif en Île-de-France. La méthodologie et les hypothèses retenues dans le cadre du PPA sont décrites dans le rapport Airparif. Le dernier inventaire étant celui de 2012, un exercice d’actualisation a été mené afin de pouvoir prendre en compte les résultats de l’enquête ADEME sur le chauffage au bois en Île-de-France. Cette actualisation permet de déterminer l’inventaire des émissions pour l’année de référence du PPA (2014), avec une répartition des activités émettrices qui correspond au périmètre des activités couvertes par les cinq groupes de travaux sectoriels mis en place pour la révision du PPA soit : aérien, agriculture, industrie, résidentiel-tertiaire et transports (hors aérien).
Secteur aérien

Afin de recenser les émissions liées au secteur aérien en Île-de-France, les aéroports de Roissy-Charles de Gaulle, Orly, Le Bourget ont été considérés, les aérodromes de loisir représentant une contribution négligeable. Les activités du secteur génératrices de polluants atmosphériques sont :

• les émissions des aéronefs au décollage, à l’atterrissage et au roulage (cycle LTO : Landing and Take off) qui regroupent les polluants principalement issus de la combustion dans les moteurs, ainsi que de l’abrasion des pneus, des freins et de la piste ;

• les émissions des activités au sol des plates-formes aéroportuaires : centrales thermiques, APU (Auxiliary Power Unit) qui alimentent les avions en électricité et GPU (Ground Power Unit) qui sont des systèmes mobiles pouvant alimenter les avions à la place des APU. Ces activités aéroportuaires ont un impact sur la qualité de l’air essentiellement centré sur les zones d’activités non résidentielles des platesformes.

La connaissance de l’impact du secteur aérien sur la qualité de l’air local et sa prise en compte est à renforcer, comparé au degré de maîtrise du secteur sur les nuisances sonores, priorité des parties prenantes depuis plus de 20 ans.

Agriculture

L’Île-de-France, région capitale et grande région urbaine, est aussi une importante région agricole : les terres agricoles (598 000 ha), réparties sur près de 5 000 exploitations, représentent 49% du territoire francilien. Les grandes cultures (céréales, oléagineux, betteraves, protéagineux, etc.) font la majeure partie (62%) de la valeur de la production francilienne, le blé pesant 41% dans la production céréalière. Le maraîchage reste aussi très présent, notamment dans la production de salades (hors laitues, 1ère région productrice), d’oignons blancs et de cresson (2ème région) et de radis (4ème région). Déjà 15% des exploitations commercialisent en circuits courts. La place de l’élevage régresse, seuls les quelques élevages équins et caprins ont vu leurs effectifs augmenter aux cours de la dernière décennie.

Le secteur de l’agriculture émet directement des particules et des oxydes d’azote. Par ailleurs, l’ammoniac (NH₃) peut se volatiliser lors de l’épandage de fertilisants puis se recombiner avec des oxydes d’azote pour former des particules (nitrate d’ammonium) ; ces particules n’étant pas émises directement, on les appelle des particules secondaires. Les différentes activités émettrices de polluants atmosphériques de ce secteur sont :

• l’usage des engrais minéraux azotés dans les cultures céréalières (émisions de NH₃) ;

• le travail du sol : labours, moissons (émissions de particules) l’utilisation d’engins mobiles non routiers de l’agriculture (émissions d’oxydes d’azote et de particules) ;

• les installations de chauffage (oxydes d’azote et particules).

Les émissions d’ammoniac liées aux élevages sont négligeables en Île-de-France, cette activité étant peu développée sur le territoire francilien.

Tableau 5 : Emissions des plates-formes aériennes en Île-de-France en 2014

<table>
<thead>
<tr>
<th>NOₓ</th>
<th>PM₁₀</th>
<th>PM₂,₅</th>
<th>COVNM</th>
<th>NH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>7686</td>
<td>239</td>
<td>206</td>
<td>801</td>
<td>0</td>
</tr>
</tbody>
</table>

Proportion des émissions régionales

7% 2% 2% 1% 0%

Pourquoi un Plan de Protection de l’Atmosphère en Île-de-France ?

Figure 2 : Carte des espaces agricoles en Île-de-France

Tableau 6 : Emissions de l’agriculture en Île-de-France en 2014

<table>
<thead>
<tr>
<th></th>
<th>NO$_x$</th>
<th>PM$_{10}$</th>
<th>PM$_{2.5}$</th>
<th>COVNM</th>
<th>NH$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions – t/an</td>
<td>3069</td>
<td>2779</td>
<td>663</td>
<td>195</td>
<td>10175</td>
</tr>
<tr>
<td>Proportion des émissions régionales</td>
<td>3%</td>
<td>15%</td>
<td>5%</td>
<td>0%</td>
<td>93%</td>
</tr>
</tbody>
</table>

Les émissions de NH$_3$, issues de l’agriculture, sont majoritaires.

Il existe, à la date du 31 janvier 2017, 11 850 installations classées pour la protection de l’environnement en Ile-de-France dont 1 604 soumises à autorisation, 598 à enregistrement et 9 648 à déclaration recensées par l’inspection des installations classées. Parmi ces installations, on compte 166 installations de combustion à autorisation ou à enregistrement dont 61 installations de plus de 50 MW soumises à la directive relative aux émissions industrielles (Directive IED) et 1731 installations de 2 à 20 MW soumises à déclaration dont 1221 soumises au contrôle périodique. Les activités du secteur industriel ont été rassemblées en trois groupes pour réaliser l’inventaire des émissions.

Tableau 7 : Les activités du secteur industriel

<table>
<thead>
<tr>
<th>Groupe d’activités</th>
<th>TYPE D’INDUSTRIE</th>
<th>PRINCIPAUX POLLUANTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production et transport</td>
<td>5 centrales de production d’électricité, centrales de production de chaleur à partir de gaz en remplacement du fuel lourd, de charbon ou de biomasse, plus de 900 stations-service (publiques ou non), sites d’extraction de pétrole</td>
<td>NOₙ, particules fines, COVNM, SO₂</td>
</tr>
<tr>
<td>d’énergie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrie manufacturière</td>
<td>3 aciéries électriques, plus de 700 ateliers de travail mécanique des métaux, près de 520 ateliers de traitement de surface des métaux (utilisation de matières abrasives, traitement chimique, dégraissage, galvanisation...), 24 installations de fabrication de produits chimiques, construction automobile et aéronautique, 4 usines de fabrication du verre dont 3 verreries de grande capacité, une cimenterie, plus d’une centaine de carrières</td>
<td>NOₙ, particules fines, COVNM, SO₂</td>
</tr>
<tr>
<td>Traitement des déchets</td>
<td>26 unités d’incinération des ordures ménagères, de boues de stations dépuration et des déchets industriels, plus de 260 centres de traitement des déchets, 13 centres de stockage de déchets ménagers et de déchets ultimes et stabilisés</td>
<td>NOₙ, particules fines, SO₂ et méthane</td>
</tr>
</tbody>
</table>

Les émissions liées à l’utilisation industrielle de solvants (application de peinture, dégraissage, nettoyage à sec, imprimeries, application de colles …) sont également prises en compte. L’évaluation repose sur des quantités nationales de ventes de peinture et solvants, ou d’autres produits contenant des solvants, sur une évolution annuelle de l’activité (enquête de l’INSEE) et des facteurs d’émissions établis par le CITEPA.

Les émissions du secteur industriel intègrent également les émissions liées aux procédés de production tels que ceux mis en œuvre dans les aciéries, l’industrie des métaux et l’industrie chimique notamment ainsi que l’utilisation d’engins spéciaux (engins de manutention…) dans l’industrie. Les méthodologies de calcul des émissions relatives à ces activités sont propres à ces secteurs d’activité et ne peuvent toutes pas être détaillées dans cette synthèse.

Tableau 8 : Emissions de l’industrie en Île-de-France en 2014

<table>
<thead>
<tr>
<th></th>
<th>NO\textsubscript{X}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
<th>COVNM</th>
<th>NH\textsubscript{3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions – t/an</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production d’énergie</td>
<td>7957</td>
<td>340</td>
<td>173</td>
<td>3913</td>
<td>0</td>
</tr>
<tr>
<td>Industrie</td>
<td>4404</td>
<td>754</td>
<td>354</td>
<td>17760</td>
<td>213</td>
</tr>
<tr>
<td>Traitement des déchets</td>
<td>2219</td>
<td>24</td>
<td>20</td>
<td>36</td>
<td>30</td>
</tr>
<tr>
<td>Proportion des émissions régionales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production d’énergie</td>
<td>8%</td>
<td>2%</td>
<td>1%</td>
<td>6%</td>
<td>0%</td>
</tr>
<tr>
<td>Industrie</td>
<td>4%</td>
<td>4%</td>
<td>3%</td>
<td>25%</td>
<td>2%</td>
</tr>
<tr>
<td>Traitement des déchets</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Résidentiel, tertiaire et chantier

Le secteur résidentiel comprend notamment les activités de chauffage individuel et résidentiel et les usages de solvants. Le secteur tertiaire, quant à lui, concerne les activités de chauffage des bâtiments du tertiaire. Il a été décidé, dans le cadre des travaux de révision du PPA, d’inclure les émissions liées aux chantiers dans ce groupe d’activités : en effet, la plus grande partie des chantiers franciliens étant liée à la construction de bâtiments, il est pertinent de considérer cette activité au sein du même groupe de travail que celui analysant les consommations de combustibles liées au chauffage des bâtiments. De manière plus détaillée, les activités émettrices considérées sont :

- les installations de combustion du secteur résidentiel et tertiaire notamment utilisées pour le chauffage des locaux et la production d’eau chaude sanitaire (émissions de SO\textsubscript{2}, NO\textsubscript{X} et poussières) ;
- chaufferies de faible puissance utilisant la biomasse, le gaz ou le fioul (émissions de particules, d’oxydes d’azote) de puissance inférieure en général à 20 MW (le chauffage urbain a été considéré avec l’industrie) ;
- chauffages individuels, notamment le chauffage au bois. Il est à noter que pour ce dernier les émissions peuvent être élevées en raison de mauvaises conditions de combustion. Une note détaillée sur le sujet se trouve en annexe 2.
- l’usage des solvants (émissions de COV) ;
- les engins mobiles non routiers du bâtiment, les activités de construction de bâtiment et les travaux publics (émissions de NO\textsubscript{X} et de particules).

Le chauffage résidentiel au bois représente 29% des émissions totales régionales de PM\textsubscript{10} et 41% des émissions de PM\textsubscript{2.5}, alors qu’il ne couvre que 4% des besoins de chauffage. Cette importante pollution liée au chauffage au bois est due à l’utilisation d’appareils peu performants et de mauvaises pratiques.

Tableau 9 : Emissions du secteur résidentiel tertiaire et chantiers en Île-de-France en 2014

<table>
<thead>
<tr>
<th></th>
<th>NO\textsubscript{X}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
<th>COVNM</th>
<th>NH\textsubscript{3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions – t/an</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Résidentiel tertiaire dont chauffage au bois</td>
<td>12850</td>
<td>6291</td>
<td>6080</td>
<td>27349</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1260</td>
<td>5430</td>
<td>5290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chantiers</td>
<td>2310</td>
<td>2491</td>
<td>985</td>
<td>5576</td>
<td>0</td>
</tr>
<tr>
<td>Proportion des émissions régionales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Résidentiel tertiaire dont chauffage au bois</td>
<td>12%</td>
<td>33%</td>
<td>47%</td>
<td>39%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td>29%</td>
<td>41%</td>
<td>13%</td>
<td>0%</td>
</tr>
<tr>
<td>Chantiers</td>
<td>2%</td>
<td>13%</td>
<td>8%</td>
<td>8%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Transport routier, fluvial et ferroviaire
Les activités émettrices du secteur des transports (hors aérien) sont :
- les émissions liées à la combustion dans les moteurs des véhicules du transport routier (émissions de particules et d’oxydes d’azote) ; les véhicules n’émettent pas la même quantité de polluants selon leur motorisation et leur âge. Les émissions considérées ne sont pas celles issues des procédures d’homologation des véhicules, mais des émissions moyennes établies par des groupes de recherche européens et utilisées dans tous les inventaires d’émissions nationaux ou régionaux (respectivement CITEPA et les Associations Agréées pour la Surveillance de la Qualité del’Air, AASQA) sur la base de mesures des émissions en conditions réelles ;
- l’évaporation de carburant, notamment pour les deux-roues motorisés (émissions de COVNM) ;
- l’abrasion des routes, des pneus et des freins (émissions de particules) ;
- les émissions liées à l’utilisation des véhicules diesel du trafic ferroviaire (émissions de particules et d’oxydes d’azote), les émissions liées à la combustion dans les moteurs de la navigation fluviale (émissions de particules et d’oxydes d’azote).

Afin de déterminer les émissions issues du secteur routier, les véhicules.kilomètres (veh.km) sont comptabilisés par type de véhicule puis multipliés par des facteurs d’émission. Un véhicule.kilomètre correspond à un kilomètre roulé par un véhicule. Cela revient à considérer l’ensemble des kilomètres parcourus par un nombre donné de véhicules, sans considérer la proportion roulée par chaque véhicule, mais uniquement le total cumulé des kilomètres roulés par ces véhicules.

Dans l’année de référence utilisée pour les travaux du PPA, la part des veh.km roulés en Ile-de-France se décompose comme suit :

| Tableau 10 : Part des veh.km roulés en Ile-de-France en 2014 (référence) |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Part en veh.km roulés IDF | REF |
| VP Total | 54 478 525 798 |
| VP Diesel | 35 971 943 396 |
| VP Essence | 18 001 436 198 |
| VP GPL, GNV et électrique | 505 146 204 |
| VUL Total | 11 895 670 156 |
| VUL Diesel | 11 666 204 437 |
| VUL Essence | 224 877 914 |
| VUL Electrique | 4 587 805 |
| PL Total | 4 388 905 186 |
| PL Diesel | 4 357 962 852 |
| PL GNV et Electrique | 30 942 334 |
| Bus et cars diesel | 464 074 726 |
| Bus et car autres | 2 139 600 |
| 2 roues essence | 5 951 896 570 |
| Tableau 11 : Emissions du transport routier, ferroviaire et fluvial en Ile-de-France en 2014 |

<table>
<thead>
<tr>
<th>2014</th>
<th>NOₓ</th>
<th>PM₁₀</th>
<th>PM₂,₅</th>
<th>COVNM</th>
<th>NH₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions – t/an</td>
<td>Transport routier</td>
<td>64228</td>
<td>5254</td>
<td>4126</td>
<td>14706</td>
</tr>
<tr>
<td></td>
<td>Transport ferroviaire et fluvial</td>
<td>1085</td>
<td>631</td>
<td>300</td>
<td>119</td>
</tr>
<tr>
<td>Proportion des émissions régionales</td>
<td>Transport routier</td>
<td>61%</td>
<td>28%</td>
<td>32%</td>
<td>18%</td>
</tr>
<tr>
<td></td>
<td>Transport ferroviaire et fluvial</td>
<td>1%</td>
<td>3%</td>
<td>2%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Emissions totales de polluants en Île-de-France

La synthèse des données présentées au chapitre précédent permet de déterminer l’inventaire des émissions « référence » utilisé dans le cadre des travaux du PPA. Airparif peut ensuite, à partir de ce cadastre des émissions, modéliser la qualité de l’air dans une situation de référence, qui servira de comparaison avec les scénarisation à horizon 2020. Pour l’ensemble des modélisations de qualité de l’air, Airparif utilise les conditions météorologiques de l’année 2010, année météorologique neutre et représentative.

Tableau 12 : Emissions totales en Île-de-France en 2014

<table>
<thead>
<tr>
<th>2014</th>
<th>NOx</th>
<th>PM10</th>
<th>PM2.5</th>
<th>COVNM</th>
<th>NH3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions – t/an</td>
<td>105751</td>
<td>18803</td>
<td>12906</td>
<td>84010</td>
<td>10980</td>
</tr>
</tbody>
</table>

Les transports routiers sont les plus forts émetteurs d’oxydes d’azote. Le secteur du résidentiel et du tertiaire apporte quant à lui la plus importante contribution aux émissions de particules fines.

Ces données de 2014 montrent ainsi que les pistes importantes d’amélioration de la qualité de l’air sont à rechercher en priorité dans ces deux secteurs : les transports et le résidentiel. Il s’agit de sources diffuses qui, individuellement, ne sont pas des sources importantes de pollution mais qui sont nombreuses et en fin de compte, représentent une importante source d’émissions à l’échelle régionale. Il n’en reste pas moins que l’apport des autres secteurs n’est pas négligeable et que tous les efforts doivent être encouragés.

Figure 3 : Répartition des émissions par secteur (référence 2014)

Émissions de NOx en Île-de-France (référence 2014)
Émissions de PM10 en Île-de-France (référence 2014)

Figure 4 : Quantité de polluants émis (référence 2014)
3 Mesurer et modéliser la qualité de l’air en Ile-de-France

3.1 Une urbanisation favorisant l'accumulation de polluants

Le périmètre retenu pour le PPA couvre l’ensemble de la région Ile-de-France, avec 1 281 communes et huit départements. Cela représente à peine plus 2% du territoire national : 12 012 km², dont 80% d’espaces naturels ou agricoles. Région la plus peuplée de France avec 12,1 millions d’habitants en 2015 (source: INSEE), l’Ile-de-France représente environ 19% de la population française. D’après les enquêtes annuelles de recensement, la population francilienne a augmenté de 0,5% par an en moyenne entre 2008 et 2013. La métropole du Grand Paris compte environ 7 millions d’habitants, ce qui en fait l’intercommunalité la plus peuplée du pays. Elle s’étend sur six départements. Enfin, le nombre d’habitants à Paris intra-muros atteignait 2,23 millions personnes en 2013, soit une densité moyenne d’habitants par km² de plus de 21 000.

La région possède un relief plutôt plat avec des plaines et des plateaux entrecoups de vallées peu profondes, ce qui est une situation favorable pour la dispersion des polluants dans l’atmosphère : les effets de forte accumulation engendrés par les reliefs sont absents en Ile-de-France. En revanche, la densité du bâti serré et les rues étroites et encaissées provoquent des phénomènes où la pollution se trouve confinée entre les bâtiments, la vitesse du vent étant plus faible. C’est l’effet « rue canyon » : les rejets de polluants dans des rues peu ventilées entraînent une accumulation de la pollution qui ne peut s’évacuer par le haut.

Les conditions météorologiques sont homogènes sur la région et se caractérisent par une influence océanique dominante. Ce climat tempéré, souvent nuageux et doux, ne se prête que rarement à des excès de température en été comme en hiver. La neige y est rare et les précipitations modérées. Paris et le cœur de l’agglomération sont les zones les plus chauffées, le climat et l’environnement (LCSE) sur l’origine des rejets de polluants dans l’air. Les conditions climatiques et topographiques de la région Ile-de-France sont donc des facteurs favorables à une bonne dispersion des polluants la plupart du temps. Les situations où les polluants sont amenés à mal se disperser et à s’accumuler correspondent aux périodes de vent faible, pas nécessairement très anticycloniques, mais toujours par temps clair et peu nuageux, favorisant la présence de fortes inversions de température.

Les principaux polluants migrateurs sont l’ozone et les particules parce qu’ils ont une durée de vie plus longue que les autres en altitude contrairement aux oxydes d’azote, polluants locaux. Cependant, de même que des polluants extérieurs « entrent » en Ile-de-France, une partie des polluants produits en Ile-de-France sont transportés hors de notre territoire, l’ensemble constituant un flux qui se déplace au gré des masses d’air et des réactions chimiques dans l’atmosphère.

Selon une étude d’Airparif et du laboratoire des sciences du climat et de l’environnement (LCSE) sur l’origine des polluants en Ile-de-France, la part de PM₁₀ produite hors de l’Ile-de-France mesure le long du boulevard périphérique s’élève en moyenne annuelle à 39%. Ce taux monte à 68% dans les zones éloignées du trafic.

3.2 Une région maillée par un réseau de stations de mesure

Pour caractériser la qualité de l’air, la concentration des polluants dans l’air ambiant (quantité de substances polluantes par volume d’air) est soit mesurée grâce aux stations de mesure d’Airparif, association agréée pour la surveillance de la qualité de l’air (AASQA) d’Ile-de-France, soit évaluée par Airparif par modélisation (via des modèles informatiques utilisant les données d’inventaire des émissions).

Les stations de mesure sont classifiées selon un système européen (guide IPR 2013). La classification se fait selon deux critères : l’environnement d’implantation (urbain, périurbain ou rural) ainsi que l’influence sous laquelle se trouve la station (i.e. l’impact que provoquent sur cette station les sources d’émissions situées dans un proche voisinage : mesure de fond, mesure sous influence du trafic ou de l’industrie).

Classification des environnements d’implantation

- implantation urbaine : emplacement dans une unité urbaine bâtie en continu, c’est-à-dire une zone urbaine dans laquelle les fronts de rue sont complètement constitués de constructions d’au minimum deux étages ou de grand bâtiments isolés d’au minimum deux étages.
- implantation périurbaine : emplacement dans une zone urbaine majoritairement bâtie, c’est-à-dire constituée d’un tissu continu de constructions isolées de toutes tailles, avec une densité de construction moindre que pour une zone bâtie en continu.
- implantation rurale : stations situées dans une commune rurale. Trois sous-catégories :

8. La notion d’unité urbaine repose sur la continuité du bâti et le nombre d’habitants. On appelle unité urbaine une commune ou un ensemble de communes présentant une zone de bâti continu (pas de coupure de plus de 200 mètres entre deux constructions) qui compte au moins 2 000 habitants. (définition INSEE)
9. Une commune rurale est une commune n’appartenant pas à une unité urbaine.
PREMIÈRE PARTIE

Pourquoi un Plan de Protection de l’Atmosphère en Île-de-France ?

- implantation rurale proche de zone urbaine : tout site implanté à moins de 10 km de la bordure de la zone bâtie d’une unité urbaine
- implantation rurale régionale : tout site implanté dans une zone éloignée de sources d’influences prédominantes
- implantation rurale nationale : tout site implanté dans une zone éloignée le plus possible des sources d’influences prédominantes.

Chaque station est définie par une unique caractéristique d’implantation, puis par l’influence (fond ou trafic) ; il ne peut cependant pas exister de stations de trafic rurales régionale ou nationale. En Île-de-France, il n’existe pas de station rurale nationale.

Figure 5 : Carte des stations de mesure du réseau Airparif

Ce sont les mesures effectuées par ces stations qui sont rapportées annuellement à la Commission Européenne par la France, et qui permettent d’analyser le respect des valeurs limites européennes. Il existe par ailleurs des microcapteurs, des stations semi-permanentes, mobiles ou industrielles pour des mesures ponctuelles.

La localisation des stations de mesures peut changer (vente du terrain sur lequel elles sont implantées, évolution de l’environnement de la station conduisant à des mesures non représentatives, ...).

3.3 La modélisation pour surveiller la qualité de l’air

En complément des mesures de concentrations effectuées par des stations fixes, Airparif utilise aussi la modélisation pour simuler les concentrations en polluants en Île-de-France à des horizons de temps plus ou moins courts. Après avoir pris en compte les émissions de polluants selon l’inventaire présenté au chapitre 2.2.3, la modélisation intègre des données météorologiques régionales ainsi que les transformations chimiques et le transport des polluants afin de déterminer la quantité de polluants par volume d’air puis d’observer son déplacement et son
évolution (certains polluants peuvent se créer ou se résorber selon les conditions).

Airparif réalise des prévisions de concentrations du jour pour le lendemain, à une échelle suffisamment fine pour la prévision de pics de pollution. Pour prévoir un dépassement de seuil (information-recommandation ou alerte), Airparif doit faire plusieurs simulations : il s’agit de modéliser la concentration moyenne sur une durée qui est propre à chaque polluant (une journée pour les particules, une heure pour le dioxyde d’azote et l’ozone) sur différentes aires géographiques, car un pic de pollution est déclenché lorsque la concentration moyenne modélisée dépasse le seuil soit sur 100 km² (pour une région d’une superficie de 12 012 km²) soit pour 10% de la population d’un département. Aussi, Airparif doit modéliser les concentrations de polluants puis vérifier, pour chaque maille de 100 km² ou contenant 10% de la population d’un département, si celle-ci dépasse le seuil.

Airparif procède aussi à des simulations à plus long terme, comme dans le cadre du PPA : il s’agit de scénariser et simuler l’état de la qualité de l’air et les concentrations en polluants en 2020. Plusieurs scénarisations ont été effectuées : la première, dite « fil de l’eau », permet de simuler les concentrations si l’on ne fait rien de plus que de poursuivre les efforts déjà engagés. La seconde, dite « fil de l’eau + PPA », simule l’état de la qualité de l’air si l’on poursuit nos efforts actuels et si, de plus, le nouveau plan de protection de l’atmosphère est mis en œuvre. Enfin, une troisième, dite « fil de l’eau + PPA + ZCR A86 » modélise l’impact d’une Zone à Circulation Restreinte (ZCR) élargie au périmètre à l’intérieur de la A86. La difficulté de simuler l’état de la qualité de l’air réside d’une part dans l’impossibilité, parfois, de chiffrer les gains attendus par certaines actions en faveur de la reconquête de la qualité de l’air et, d’autre part, dans la difficulté à séparer les effets de diverses mesures. Plusieurs actions du Plan de protection de l’atmosphère n’ont pas pu être évaluées. Elles n’ont donc pas pu être prises en compte dans les simulations alors qu’elles contribueraient à l’amélioration de la qualité de l’air. C’est pourquoi ces modélisations sont des simulations des effets de la mise en œuvre de 12 défis sur 25 mais en aucun cas la simulation de la mise en œuvre de toutes les actions du PPA. Par ailleurs, ces modélisations reposent sur des hypothèses qui peuvent évoluer ; elles doivent être interprétées avec précaution.

4 Des efforts réels ces dix dernières années

4.1 Diminution des concentrations moyennes annuelles de PM₁₀ et NO₂

L’amélioration de la qualité de l’air liée à la baisse des émissions poursuit une progression amorcée il y a plusieurs années. En situation de fond urbain ou périurbain, les concentrations de PM₁₀ et NO₂ ont nettement diminué depuis plus de dix ans. L’évolution des concentrations moyennes annuelles en PM₁₀ et en NO₂ qui ont été mesurées par les stations sont représentées ci-dessous, en faisant la distinction en fonction de l’influence des stations et de leur environnement. Ces graphiques, repris du bilan qualité de l’air 2015 d’Airparif, représentent l’évolution des concentrations moyennes sur 3 ans en fond urbain (en agglomération) et en fond périurbain (hors agglomération) avec un échantillon évolutif de stations pour les PM₁₀ et avec un échantillon constant de stations pour le NO₂.

Les concentrations en PM₁₀ sont très sensibles aux conditions météorologiques, on peut cependant observer une réelle tendance à la baisse, due à des progrès réalisés dans tous les secteurs d’activités. En PM₁₀, le rapport entre concentrations en fond et en trafic est sensiblement le même depuis 2003, ce qui traduit une évolution dans le même sens en fond comme en proximité du trafic routier.
La baisse observée pour le dioxyde d’azote, essentiellement émis par les processus de combustion (automobile, industrielle), s’explique entre autres par les progrès réalisés dans le secteur des transports routiers (pots catalytiques, renouvellement du parc de véhicules).

La baisse des concentrations en NO₂ a été plus importante en fond qu’en proximité de trafic (rapport d’environ 1,5 avant les années 2000, pour un rapport supérieur à 2 depuis 2005) : cela traduit une amélioration de la situation de fond, et une amélioration moins forte des concentrations en proximité du trafic routier. Le ralentissement de la baisse en proximité du trafic routier peut s’expliquer par la part toujours importante de véhicules diesel dans le parc roulant, qui émettent plus d’oxydes d’azote que les véhicules essence, ou encore par la recombinaison de monoxyde d’azote avec l’ozone à proximité des axes routiers (le dioxyde d’azote est un polluant complexe émis directement ou bien issu de la combinaison chimique d’autres polluants).

Les diminutions des concentrations moyennes et du nombre de franciliens exposés à la pollution aux particules et aux oxydes d’azote depuis près de 10 ans sont liées, d’une part, aux évolutions techniques et réglementaires européennes et nationales (amélioration de la qualité des combustions thermiques dans les moteurs utilisés dans les transports, y compris dans l’aérien, renforcement des normes de rejets et amélioration des meilleures techniques disponibles, amélioration de l’offre de mobilité propre, prise de conscience politique et citoyenne, planifications nationales au travers du Plan d’Urgence pour la Qualité de l’Air[10], du Plan Particules[11], aides nationales à l’achat de véhicules propres, etc.), et d’autre part grâce aux efforts régionaux et locaux (PPA, aides locales à l’achat de véhicules propres, amélioration de l’offre de transports en commun en Île-de-France, etc.).

4.2 Des épisodes de pollution aux PM₁₀ plus fréquents que pour les autres polluants

Ces améliorations sont cependant fragiles car elles dépendent pour partie des conditions météorologiques : ainsi par exemple, en situation anticyclonique hivernale, l’absence de vent, la stabilité de l’atmosphère et l’inversion de température favorisent l’accumulation des polluants dans les basses couches de l’atmosphère et donc potentiellement le dépassement des seuils définissant les épisodes de pollution et la mise en œuvre de mesures d’urgence pour en limiter les effets. La lutte contre les épisodes de pollution aux particules fines est d’autant plus complexe que la réduction des émissions à la source doit permettre de réduire la quantité de particules primaires émises mais aussi la quantité de particules secondaires, et donc de leurs précurseurs (dioxides d’azote et ammoniac notamment).

En Île-de-France, la plupart des épisodes de pollution ont lieu en hiver (de décembre à février), ainsi qu’en mars. La figure 8 comptabilise le nombre de dépassements des seuils (information-recommandation « IR » et alerte), en prenant en compte la modification de seuil intervenue en 2011.

Figure 8 : Nombre moyen de dépassements des seuils de qualité de l’air entre 2007 et 2016

Ces épisodes de pollution concernent quasiment exclusivement les particules fines PM₁₀. Les analyses de composition chimique montrent que ces épisodes hivernaux sont causés par l’accumulation des particules provenant de la combustion du bois ainsi que du trafic routier, dans des proportions le plus souvent équivalentes (50-50). Au printemps, les épisodes se singularisent par l’influence des activités agricoles en sus du trafic routier et du chauffage au bois encore présent : les épandages de fertilisants libèrent de l’ammoniac dans l’atmosphère, qui, en se combinant avec les oxydes d’azote forment des particules secondaires. En juillet, des épisodes estivaux de pollution à l’ozone peuvent être observés ; l’ozone est un polluant secondaire qui se forme lorsque l’ensoleillement est particulièrement important et que des oxydes d’azote et des composés organiques volatiles (COV) sont en présence. Souvent, ce polluant se forme dans l’atmosphère à une certaine distance de là où ses précurseurs ont été émis.

Depuis 2007, le nombre de pics de pollution déclenchés en Île-de-France est présenté en figure 9 : l’irrégularité du nombre de pics de pollution s’explique par leur sensibilité aux conditions météorologiques ainsi que par le changement de réglementation. Les seuils de déclenchement ont été abaissés fin 2011 pour les particules PM₁₀. Ils sont ainsi passés de 80 à 50 µg/m³ pour le seuil d’information-recommandation, et de 125 à 80 µg/m³ pour le seuil d’alerte. En 2011, Airparif avait estimé que ce changement de seuils, pouvait entraîner une multiplication par cinq du nombre d’épisodes de pollution.

Cette estimation s’est confirmée puisque contre une moyenne de près de 2,5 dépassements entre 2007 et 2011, la moyenne du nombre de dépassements en PM$_{10}$ entre 2012 et 2016 est à 11,5.

Cette augmentation du nombre de dépassements ne reflète donc pas une augmentation de la pollution puisque celle-ci a baissé entre 2007 et 2016 mais s’explique uniquement par l’abaissement des seuils de déclenchement issus des arrêtés interministériels de 2011 et du 7 avril 2016.

Figure 9 : Nombre de dépassements par an des seuils de qualité de l’air entre 2007 et 2016

4.3 Diminution de l’exposition de la population aux PM$_{10}$ et NO$_{2}$

L’exposition des habitants aux dépassements de valeurs limites est estimée en croisant les cartes de concentrations modélisées à 50 mètres avec les données de population spatialisées à la même résolution. Conformément aux préconisations nationales, il s’agit de la population potentiellement exposée, c’est-à-dire que sont comptabilisés les habitants dont l’adresse de résidence est située dans une zone dépassant strictement la valeur limite.

En 2015, on compte 300 000 franciliens exposés à des dépassements de la valeur limite en particules fines PM$_{10}$ et 1,6 M exposés au dioxyde d’azote NO$_{2}$, contre respectivement 5,6 M et 3,8 M en 200712 (sur la base de la valeur limite journalière pour PM$_{10}$ et de la valeur limite annuelle pour NO$_{2}$).

Si la situation tend ainsi à s’améliorer globalement, on observe cependant une augmentation de la population habitant à proximité d’axes routiers à trafic plus ou moins dense. En effet, depuis le milieu des années 1990, en lien avec une politique des transports visant à limiter les déplacements automobiles, les mesures législatives et réglementaires se sont multipliées en faveur de la densification de l’habitat et la réduction de l’étalé urbain. Ainsi, dans la période 1982-2008, 73% des communes franciliennes ont connu une densification de leur habitat, conduisant à une augmentation du nombre d’immeubles d’habitation près des voies de transport.

Dans ce contexte, il convient de réaffirmer l’importance de l’article L121-1 du code de l’urbanisme qui prévoit que les schémas de cohérence territoriale (SCoT), les plans locaux d’urbanisme (PLU) et les cartes communales (CC) déterminent les conditions permettant d’assurer « la préservation de la qualité de l’air ». C’était l’objet de la mesure réglementaire n°9 du PPA de 2013 qui explicitait plusieurs dispositions à prendre en compte dans l’élaboration de ces documents d’urbanisme, notamment la limitation de l’urbanisation à proximité des grands axes routiers (en particulier des établissements sensibles comme les crèches, écoles, maisons de retraite…).

Lorsqu’ils sont soumis à évaluation environnementale, les plans locaux d’urbanismes et projets doivent aujourd’hui prendre en compte les enjeux de la qualité de l’air. Par ailleurs, les plans climat air énergie territoriaux (PCAET) doivent être compatibles avec le PPA (article L229-26 du Code de l’environnement).

Figure 10 : Nombre de franciliens exposés à des dépassements de valeurs limites annuelles

12. AIRPARIF, bilan de la qualité de l’air en Ile-de-France en 2015
4.4 Les bénéfices de l’amélioration de la qualité de l’air sur la santé

Étude Santé Publique France

Santé publique France a publié en juin 2016 les résultats d’une étude rendant compte de l’impact de la pollution aux particules PM$_{2.5}$ en France et dans les régions. Le gain moyen en espérance de vie, le nombre d’années de vie gagnées (en total sur l’ensemble de la population) et le nombre de décès évitables a été estimé en comparant les concentrations moyennes de 2007-2008 à des scénarios où les concentrations moyennes respecteraient différentes valeurs : la valeur guide recommandée par l’Organisation Mondiale pour la Santé (OMS, 10µg/m3) ou encore un scenario sans pollution anthropique. Sans pollution anthropique, 48 000 décès prématurés seraient évités en France dont 10 249 en Île-de-France sur plus de 500 000 décès toutes causes.

En Île-de-France, près de 68 000 décès toutes causes confondues sur un total de 11,6 millions d’habitants sont dénombrés dans cette étude (2007-2008). Si la valeur guide de l’OMS était respectée, près de 6 000 décès prématurés seraient évités, et 7 mois d’espérance de vie seraient gagnés (de 5 à 17 mois selon les départements).

La valeur limite pour les PM$_{2.5}$ est respectée en Île-de-France en 2015 ; cette étude démontre que le seul respect des valeurs limites européennes pour les particules ne permet pas de répondre totalement à l’enjeu sanitaire.

Tableau 13 : Gain moyen* en espérance de vie à 30 ans (mois) et nombre de décès évitables en Île-de-France et dans les départements selon différents scénarios

<table>
<thead>
<tr>
<th>Situation réelle 2007-2008 par rapport à :</th>
<th>sans pollution anthropique</th>
<th>recommandations OMS (10 µg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Espérance de vie</td>
<td>Décès évitables</td>
</tr>
</tbody>
</table>

* l’intervalle de confiance est calculé en utilisant les bornes inférieures et supérieures de l’intervalle de confiance à 95% des RR
(source : Host and Legout 2016, Pascal, de Crouy Chanel et al. 2016)

13. Sur la base des niveaux de pollution modélisés en 2007-2008 (Gazel-Air) soit une concentration régionale moyenne en PM$_{2.5}$ de 13,8 µg/m3 (12,8 µg/m3 pour la Seine-et-Marne et 18,9 µg/m3 pour Paris)
14. Soit les concentrations observées dans les 5% de communes équivalentes les moins polluées, soit 6,5 µg/m3 pour les communes de 20 000 à 100 000 habitants et 9,2 µg/m3 pour celles de plus de 100 000 habitants
Etude INERIS

Dans le cadre des simulations réalisées pour le PPA, une modélisation de l’impact sanitaire de la pollution de l’air en 2015 en Ile-de-France a été réalisée par l’INERIS (voir annexe XII), utilisant une approche différente de l’étude de Santé Publique France. Les résultats des tableaux 13 et 14 ne sont pas comparables : ils font appel à des modélisations différentes et utilisent des indicateurs différents.

Tableau 14 : Indicateurs d’impacts sanitaires de la pollution atmosphérique chronique en Ile-de-France en 2015

<table>
<thead>
<tr>
<th>Polluant</th>
<th>Situation réelle 2015 par rapport à sans pollution atmosphérique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortalité chronique (tous âges)</td>
<td>87 083 années de vie perdues</td>
</tr>
<tr>
<td>Mortalité chronique (30 ans et plus)</td>
<td>5 135 morts prématurées</td>
</tr>
<tr>
<td>Mortalité infantile (0-1 an)</td>
<td>18 morts prématurées</td>
</tr>
<tr>
<td>Bronchite chronique (27 ans et plus)</td>
<td>5 815 cas</td>
</tr>
<tr>
<td>Bronchite infantile (6-12 ans)</td>
<td>29 157 cas</td>
</tr>
<tr>
<td>Admissions à l’hôpital pour causes respiratoires (tous âges)</td>
<td>3 147 cas</td>
</tr>
<tr>
<td>Admissions à l’hôpital pour causes cardiovasculaires (plus de 18 ans)</td>
<td>2 968 cas</td>
</tr>
<tr>
<td>Journées d’activité restreintes (tous âges)</td>
<td>10 484 947 jours</td>
</tr>
<tr>
<td>Journées avec symptômes d’asthme (enfant 5-19 ans)</td>
<td>385 062 jours</td>
</tr>
<tr>
<td>Journées de travail perdues (15-64 ans)</td>
<td>2 750 251 jours</td>
</tr>
<tr>
<td>Bronchite infantiles (5-14 ans)</td>
<td>28 311 cas</td>
</tr>
<tr>
<td>Admissions à l’hôpital pour causes respiratoires (tous âges)</td>
<td>6 336 cas</td>
</tr>
</tbody>
</table>

Autres études

Selon une étude américaine de 2009 (Pope, 2009), 15% de l’amélioration de l’espérance de vie entre 1980 et 2000 aux Etats-Unis est attribuable à la baisse des niveaux de particules.

Une étude longitudinale récente (Berhane, 2016), menée de 1993 à 2012 montre qu’une réduction faible des concentrations (de l’ordre de 3 à 5 ppb (partie par milliard) pour le NO₂ et l’O₃ et de 6 à 7 µg/m³ pour les particules) entraîne une diminution de la prévalence de l’asthme chez les enfants asthmatiques de 10 à 19%. Cette diminution de la prévalence de l’asthme est de l’ordre de 2% chez les enfants non-asthmatiques.

Comme le montre le rapport du Sénat sur le coût de la pollution atmosphérique (Sénat, 2015), les actions en matière de lutte contre la pollution de l’air ne représentent pas une charge financière, mais bien une source d’économies, en particulier en matière de bénéfices sanitaires.
4.5 Bilan de la mise en œuvre du PPA 2013

En 2013, la révision du PPA de 2006 a imposé 11 mesures. Chaque année, l’impact de ces mesures et des autres mesures nationales et locales sur la qualité de l’air est publié dans le bilan annuel de la qualité de l’air d’Airparif. Les variations des concentrations de polluants dans l’air présentés dans ces rapports sont influencés par les conditions météorologiques ce qui ne permet d’apprécier de façon isolée l’impact des mesures mises en œuvre.

Ce chapitre présente donc les mesures du PPA 2013 et leur état d’avancement fin 2015.

Tableau 15 : Les mesures du PPA de l’Île-de-France et leur état d’application à la fin 2015

<table>
<thead>
<tr>
<th>MESURE REGLEMENTAIRE</th>
<th>AVANCEMENT FIN 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>REG1 Obliger les principaux pôles générateurs de trafic à réaliser un plan de déplacements d’établissement (PDE)</td>
<td>Sur 300 assujettis, réalisée à 60%</td>
</tr>
<tr>
<td>REG2 Imposer des valeurs limites d’émissions pour toutes les installations fixes de chaufferies collectives</td>
<td>Réalisée à 90%</td>
</tr>
<tr>
<td>REG3 Limiter les émissions de particules dues aux équipements individuels de combustion du bois</td>
<td>Réalisée à 15%</td>
</tr>
<tr>
<td>REG4 Gestion des dérogations relatives à l’interdiction de brûlage à l’air libre des déchets verts</td>
<td>Réalisée à 90%</td>
</tr>
<tr>
<td>REG5 Réduire les émissions de particules dues aux groupes électrogènes</td>
<td>Réalisée à 50%</td>
</tr>
<tr>
<td>REG6 Améliorer la connaissance et la mesure des émissions industrielles</td>
<td>Réalisée à 100%</td>
</tr>
<tr>
<td>REG7 Interdire les épandages par pulvérisation quand l’intensité du vent est strictement supérieure à 3 Beaufort</td>
<td>Réalisée à 100%</td>
</tr>
<tr>
<td>REG8 Définir les attendus relatifs à la qualité de l’air à retrouver dans les documents d’urbanisme</td>
<td>Réalisée à 100%</td>
</tr>
<tr>
<td>REG9 Définir les attendus relatifs à la qualité de l’air à retrouver dans les études d’impact</td>
<td>Réalisée à 100%</td>
</tr>
<tr>
<td>REG10 Mettre en œuvre la réglementation limitant l’utilisation des moteurs auxiliaires de puissance (APU) lors du stationnement des aéronefs sur les aéroports de Paris-Charles de Gaulle, Paris Orly et Paris Le Bourget</td>
<td>Réalisée à 90%</td>
</tr>
<tr>
<td>REG11 Diminuer les émissions en cas de pointe de pollutions</td>
<td>Réalisée à 100%</td>
</tr>
</tbody>
</table>

En trois ans de mise en œuvre, toutes ces mesures n’ont pu être déployées en totalité ; ce bilan témoigne de la nécessité de fournir un effort supplémentaire, afin :

- d’améliorer la capacité de réponse des entreprises aux déplacements de leurs employés : les plans de déplacements (PDE) ont été remplacés par les Plans de Mobilité par la Loi pour la Transition Énergétique et la Croissance Verte (LTECV). En plus de cette évolution réglementaire, le retour d’expérience sur la mise en œuvre de cette mesure montre que la mise en place du réseau Promobilité n’a pas suffi à mobiliser les assujettis. La révision du PPA permettra d’aller plus loin et de permettre aux entreprises de mieux s’approprier ce sujet.

- de limiter les émissions liées à la combustion du bois en équipements de chauffage indépendants : il existe plusieurs types d’équipements de chauffage individuel au bois (foyer ouvert, foyer fermé, insert, poêle, cuisinière) et différents usages (chauffage principal, chauffage d’appoint, chauffage d’agrément). L’utilisation du bois en foyer ouvert comme chauffage principal est interdit depuis le PPA de 2006\(^{15}\). Le chauffage d’appoint et le chauffage d’agrément restent cependant des sources importantes de pollution aux particules et aux oxydes d’azote (en termes de PM\(_{10}\), les émissions se partagent ainsi en fonction des usages : chauffage principal : 18%, chauffage d’appoint : 51%, chauffage d’agrément : 31% et les émissions de PM\(_{10}\) de cette source représentent 29% des émissions régionales.

\(^{15}\) Art. 13 et 14 de l’arrêté N°2007-1590 du 24.9.2007 relatif à la mise en œuvre du Plan de Protection de l’Atmosphère et à la réduction des émissions de polluants atmosphériques en Île-de-France repris dans les articles 30 et 32 de l’arrêté 2013 084-0002 relatif à la mise en œuvre du PPA révisé pour l’Île-de-France
Les changements de comportement des franciliens utilisant le chauffage au bois pourront permettre de diminuer l’utilisation du chauffage au bois dans de mauvaises conditions et donc de diminuer les émissions de polluants associées. Une amélioration de l’information des franciliens et la mise en place de dispositifs d’aide sont des étapes nécessaires qui ont été engagées sur la période 2013-2016 mais qu’il est nécessaire de renforcer d’ici 2020. Pour les émissions de particules dues aux groupes électrogènes, la limitation d’usage mise en place prescrite par l’arrêté n° 2013 084-0002 du 25 mars 2013 modifié (Art.34) impliquait que des systèmes d’alimentation électrique de remplacement soient mis à disposition des utilisateurs en lieu et place des groupes électrogènes habituellement utilisés. Or, les contraintes techniques et les procédures prévues par les distributeurs d’électricité pour mettre à disposition des raccordements provisoires au réseau sont rarement compatibles avec les contraintes organisationnelles des potentiels clients (chantiers de BTP, tournages de cinéma, manifestations publiques, …). Pour rendre efficace cette mesure, il est apparu nécessaire, dans la révision du PPA, d’adopter une démarche plus globale visant à réduire les émissions liées aux chantiers.

En plus de ces mesures réglementaires, des mesures incitatives avaient été adoptées :
- des objectifs (OBJ) dans le secteur du transport routier déterminant l’effort restant à fournir et différents leviers d’action associés ;
- des mesures d’accompagnement (ACC) visant à sensibiliser à l’amélioration de la qualité de l’air ou à mettre en œuvre des mesures concourant à la réduction des émissions ;
- des études (ETU) visant à évaluer la mise en place d’actions complémentaires.

Tableau 16 : Mesures du PPA d’Ile-de-France de 2013 et état d’avancement de leur réalisation fin 2015

<table>
<thead>
<tr>
<th>AUTRES MESURES</th>
<th>AVANCEMENT FIN 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objectifs dans le secteur du transport routier (OBJ)</td>
<td></td>
</tr>
<tr>
<td>OBJ 1</td>
<td>Promouvoir une politique de transports respectueuse de la qualité de l’air et atteindre les objectifs fixés par le (projet de) PDUIF</td>
</tr>
<tr>
<td>S/OBJ 1.1</td>
<td>Promouvoir une gestion optimisée des flux de circulation routière et le partage multimodal de la voirie</td>
</tr>
<tr>
<td>S/OBJ 1.2</td>
<td>Promouvoir le développement des véhicules « propres »</td>
</tr>
<tr>
<td>OBJ 2</td>
<td>Mettre en œuvre des mesures supplémentaires permettant d’accroître de 10% la réduction des émissions liées au trafic routier dans le cœur dense de l’agglomération</td>
</tr>
<tr>
<td>Mesures d’accompagnement (ACC)</td>
<td></td>
</tr>
<tr>
<td>ACC1</td>
<td>Sensibiliser les automobilistes franciliens à l’éco-conduite</td>
</tr>
<tr>
<td>ACC2</td>
<td>Sensibiliser les gestionnaires de flottes captives aux émissions polluantes de leurs véhicules</td>
</tr>
<tr>
<td>ACC3</td>
<td>Former et informer les agriculteurs et les gestionnaires d’espaces verts et d’infrastructures de transport sur la pollution atmosphérique, notamment par une incitation à l’acquisition de matériaux ou installations limitant les émissions de polluants atmosphériques</td>
</tr>
<tr>
<td>ACC4</td>
<td>Réduire les émissions des plates-formes aéroportuaires</td>
</tr>
<tr>
<td>ACC5</td>
<td>Sensibiliser les Franciliens à la qualité de l’air</td>
</tr>
<tr>
<td>ACC6</td>
<td>Harmonisation des éléments de communication sur le bois-énergie</td>
</tr>
<tr>
<td>ACC7</td>
<td>Réduire les émissions de particules dues aux chantiers</td>
</tr>
</tbody>
</table>
Considérant leur apport sur la qualité de l’air et l’effort à maintenir par tous, les mesures suivantes sont maintenues dans l’arrêté préfectoral approuvant le PPA révisé.

Tableau 17 : Mesures du PPA d’Île-de-France de 2013 conservées dans l’arrêté du PPA 2017

<table>
<thead>
<tr>
<th>INTITULÉ</th>
</tr>
</thead>
<tbody>
<tr>
<td>REG3 Limiter les émissions de particules dues aux équipements individuels de combustion du bois</td>
</tr>
<tr>
<td>REG4 Gestion des dérogations relatives à l’interdiction de brûlage à l’air libre des déchets verts</td>
</tr>
<tr>
<td>REG5 Réduire les émissions de particules dues aux groupes électrogènes</td>
</tr>
<tr>
<td>REG7 Interdire les épandages par pulvérisation quand l’intensité du vent est strictement supérieure à 3 Beaufort</td>
</tr>
</tbody>
</table>

5 Un nouveau PPA pour accélérer la reconquête de la qualité de l’air

5.1 Une volonté d’agir à plusieurs niveaux

> Les échelles d’intervention

Plusieurs échelles ont impliquées dans la lutte contre la pollution de l’air :

• L’échelle internationale permet la prise en compte du caractère transfrontalier de la pollution de l’air. Le protocole de Göteborg16 (2012) demande aux pays signataires de la Convention sur la pollution atmosphérique transfrontière à longue distance de diminuer leurs émissions de SO₂, NOₓ, PM₂,₅, COVNM et NH₃ d’ici 2020. L’Organisation Mondiale pour la Santé a classé la pollution de l’air extérieur comme cancérigène pour l’homme en 2013 et appelle à une action mondiale renforcée sur la pollution atmosphérique17, comme le témoigne l’engagement des maires de 86 grandes métropoles mondiales au sein du C40 pour lutter contre la pollution de l’air ;

• L’échelle européenne permet d’unifier les réglementations entre Etats membres. La directive 2008/50/CE relative à la qualité de l’air ambiant et à un air pur en Europe et la directive 2004/107/CE définissent les valeurs réglementaires encadrant la pollution atmosphérique, ainsi que les plans et programmes à mettre en œuvre par les États membres en cas de dépassement de ces seuils. La directive 2016/2284 du Parlement européen et du Conseil concernant la réduction des émissions nationales de certains polluants atmosphériques, qui remplace la directive NEC18 impose aux États membres de limiter leurs émissions anthropiques annuelles de : SO₂, NOₓ, NH₃, COVNM et PM₂,₅ conformément aux engagements nationaux de réduction fixés à l’annexe II de la directive. Ces engagements nationaux portent sur deux échéances : 2020 et 2030 (voir annexe V) ;

• L’échelle nationale donne un cadrage réglementaire (gestion des pics de pollution, réglementation relative aux installations classées pour l’environnement (ICPE), convergence des prix à la pompe de l’essence et du gazole, obligations d’achat de véhicules propres lors des renouvellements de flottes, etc) et incitatif (primes à la conversion des vieux véhicules et aides à l’achat de véhicules à faibles émissions, aides financières à la mise en place de bornes de recharge électrique, indemnité kilométrique vélo, crédit d’impôt transition énergétique, aides financières de l’ADEME pour le renouvellement des appareils de chauffage au bois, etc). La cohérence du PPA avec les prescriptions du Code de l’environnement est démontrée en annexe VI ;

• Les échelles régionale et locale permettent la mise en œuvre concrète d’actions de réduction des émissions de polluants grâce à une connaissance précise des problématiques locales. Ces actions sont à la fois des actions incitatives, mais aussi de contrôle et de sanction, selon les compétences.

> La réglementation

Par valeurs réglementaires, on entend les concentrations de polluants à ne pas dépasser en situation chronique ou celles qui déclenchent les épisodes de pollution. Plusieurs valeurs existent pour chaque polluant afin de caractériser les différentes situations :

apps.who.int/gb/ebwha/pdf_files/WHA68/I68_ACONF2Rev1-en.pdf (résolution)
Valeurs limites : concentrations moyennes à atteindre et à ne pas dépasser. Elles sont fixées par l’Union Européenne sur la base des connaissances scientifiques, techniques et économiques afin d’éviter, de prévenir et de réduire les effets nocifs des polluants sur la santé humaine ou sur l’environnement dans son ensemble (Code de l’environnement, Art. 221-1).

Seuil d’information - recommandation : concentration au-delà de laquelle une exposition de courte durée présente un risque pour la santé humaine de groupes particulièrement sensibles au sein de la population et qui rend nécessaire l’émissions d’informations immédiates à destination de ces groupes et de recommandations pour réduire certaines émissions (Code de l’environnement, Art. 221-1) ;

Seuil d’alerte : concentration au-delà de laquelle une exposition de courte durée présente un risque pour la santé humaine de l’ensemble de la population, justifiant la mise en place de mesures d’urgence (Code de l’environnement, Art. 221-1) ;

D’autres valeurs existent, non contraignantes, qui caractérisent les concentrations de polluants (pas uniquement PM\(_{10}\), NO\(_2\), SO\(_2\) et O\(_3\)) vers lesquelles il faudrait tendre pour limiter encore les impacts sur la santé humaine : valeurs cibles, objectifs de qualité et recommandations de l’OMS ;

Valeurs cibles : concentrations fixées pour prévenir ou réduire les effets nocifs des polluants sur la santé et l’environnement et à atteindre dans la mesure du possible. Ces valeurs, définies par l’Union Européenne, n’ouvrant pas de contentieux si elles sont dépassées ;

Objectifs de qualité de l’air : concentrations à atteindre à long terme afin d’assurer une protection efficace de la santé humaine et de l’environnement. Ces valeurs, définies au niveau national, ne sont pas contraignantes ;

Recommandations de l’OMS : basées sur l’analyse par des experts des données scientifiques les plus récentes\(^\text{19}\). Ces valeurs ne sont pas contraignantes.

\(^{19}\) Lignes directrices OMS relatives à la qualité de l’air – mise à jour mondiale 2005 http://www.who.int/phe/health_topics/outdoorair/outdoorair_aqg/fr/
Tableau 18 : Valeurs limites européennes, objectif de qualité, valeurs cibles, recommandations Organisation Mondiale de la Santé

<table>
<thead>
<tr>
<th>NO₂</th>
<th>PM₁₀</th>
<th>PM₂,₅</th>
<th>O₃</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeurs limites européennes</td>
<td>200 µg/m³ sur 1 h à ne pas dépasser plus de 18 fois /an</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>50 µg/m³ sur 1 jour à ne pas dépasser plus de 35 fois /an</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>40 µg/m³ sur 1 an</td>
<td>40 µg/m³ sur 1 an</td>
<td>25 µg/m³ sur 1 an</td>
</tr>
<tr>
<td>Seuil d’information-recommandation</td>
<td>200 µg/m³ sur 1 h sur 100 km² ou 10% de la population d’un département</td>
<td>50 µg/m³ sur 1 jour sur 100 km² ou 10% de la population d’un département</td>
<td>-</td>
</tr>
<tr>
<td>Persistance du seuil d’information-recommandation (= alerte)</td>
<td>Prévision pour J-1, J et J+1 200 µg/m³ sur 1 h sur 100 km² ou 10% de la population d’un département</td>
<td>Prévision pour J et J+1 de 50 µg/m³ sur 1 jour sur 100 km² ou 10% de la population d’un département</td>
<td>-</td>
</tr>
<tr>
<td>Seuil d’alerte</td>
<td>400 µg/m³ sur 1 h sur 100 km² ou 10% de la population d’un département</td>
<td>80 µg/m³ sur 1 jour sur 100 km² ou 10% de la population d’un département</td>
<td>-</td>
</tr>
<tr>
<td>Valeurs cibles</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Objectifs de qualité</td>
<td>-</td>
<td>-</td>
<td>20 µg/m³ sur 1 an</td>
</tr>
<tr>
<td></td>
<td>40 µg/m³ sur 1 an</td>
<td>30 µg/m³ sur 1 an</td>
<td>10 µg/m³ sur 1 an</td>
</tr>
<tr>
<td>Recommandation OMS</td>
<td>200 µg/m³ sur 1 h</td>
<td>50 µg/m³ sur 1 h</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>25 µg/m³ sur 24 h</td>
</tr>
<tr>
<td></td>
<td>40 µg/m³ sur 1 an</td>
<td>20 µg/m³ sur 1 an</td>
<td>10 µg/m³ sur 1 an</td>
</tr>
</tbody>
</table>
5.2 Des dépassements des valeurs limites constatés en 2015 en Île-de-France

La situation de l’Île-de-France par rapport aux valeurs limites pour les différents polluants réglementés est présentée au tableau 20. Les cartes des dépassements des valeurs limites pour les PM$_{10}$ et le NO$_2$ en Île-de-France en 2015 sont présentées en figures 12 et 13. L’atlas cartographique de l’annexe VII les présente en format agrandi.

Une station de trafic a mesuré des dépassements en PM$_{10}$ en 2015. Elle se trouve au cœur de l’agglomération dense en proche couronne.

Tableau 19 : Conformité de l’Île-de-France aux valeurs limites européennes en 2015

<table>
<thead>
<tr>
<th>Polluant</th>
<th>Valeur limite horaire ou journalière</th>
<th>Valeur limite annuelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO$_2$</td>
<td>Respectée sur 21 stations</td>
<td>Respectée sur 33 stations</td>
</tr>
<tr>
<td></td>
<td>Dépassée sur 2 stations</td>
<td>Dépassée sur 25 stations</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>Respectée sur 18 stations</td>
<td>Respectée sur 23 stations</td>
</tr>
<tr>
<td></td>
<td>Dépassée sur 5 stations</td>
<td>Dépassée sur 1 station</td>
</tr>
<tr>
<td>PM$_{2.5}$</td>
<td>Pas de valeur limite</td>
<td>Pas de valeur limite</td>
</tr>
<tr>
<td>O$_3$</td>
<td>Pas de valeur limite</td>
<td>Respectée</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>Pas de valeur limite</td>
<td>Respectée</td>
</tr>
</tbody>
</table>

Figure 12 : Stations en dépassement occasionnel de la valeur limite annuelle en PM$_{10}$ en 2015

Figure 13 : Stations en dépassement des valeurs limites de NO$_2$ en Île-de-France en 2015

5.3 Des injonctions juridiques à agir

La France est actuellement visée par deux procédures pré-contentieuses relatives au non-respect de la directive 2008/50/CE concernant la qualité de l’air. L’une concerne les particules fines (PM$_{10}$), l’autre vise le dioxyde d’azote (NO$_2$). L’Île-de-France fait partie des régions concernées.

> Avis motivé pour les PM$_{10}$

Après une première mise en demeure (2009), la Commission a adressé à la France une mise en demeure complémentaire en février 2013 et a élargi ses griefs contre elle : désormais, il est reproché à la France de ne pas se conformer aux niveaux réglementaires de concentration de particules fines dans l’air et de ne pas mettre en place des plans d’action répondant aux ambitions de la directive. Le 29 avril 2015, un avis motivé concernant 10 zones a été envoyé aux autorités françaises. Une réponse a été envoyée par la France à la Commission européenne le 29 juin 2015 puis complétée le 25 juillet 2016.

Figure 14 : Zones nationales de dépassements des valeurs limites en PM$_{10}$ en 2015

Note : normes pour la protection de la santé humaine prises en compte : valeur journalière : 65 µg/m3 ne pas dépasser plus de 15 jours par année (zone) ; valeur annuelle : 40 µg/m3 en moyenne sur l’année civile.
Paris n’est pas la seule agglomération où des dépassements des valeurs limites journalières et annuelles sont encore enregistrés, les agglomérations de Marseille, Lyon, Douai-Béthune-Valenciennes, Grenoble, Lyon, la zone urbaine régionale de Rhône-Alpes, Nice, la zone urbaine régionale de PACA et la Martinique sont aussi concernées.

Avis motivé pour le NO_2

Les valeurs limites européennes concernant le NO_2 sont dépassées chaque année dans plusieurs agglomérations en France et sur plusieurs stations en Île-de-France. Le 15 février 2017, la Commission européenne a adressé aux autorités françaises un avis motivé relatif au non-respect des valeurs limites annuelles et horaires fixées pour le dioxyde d’azote pour 19 zones en France.

Figure 15 : Zones nationales de dépassements des valeurs limites en NO_2, en 2015

A l’échelle de l’Union européenne, l’Allemagne, l’Italie, le Royaume-Uni et l’Espagne ont reçu un même avis motivé. Mais ce sont en fait 17 États-membres qui présentent des dépassements de la valeur limite annuelle sur au moins une de leurs stations, soit 7% de la population européenne.

Figure 16 : Carte des dépassements des valeurs limites annuelles de NO_2 relevés en Europe

Injonction du Conseil d’Etat

Par arrêt du 12 juillet 2017, le Conseil d’Etat a enjoint le Premier Ministre et le Ministre chargé de l’environnement de prendre toutes les mesures nécessaires pour que soit élaboré et mis en œuvre, dans les zones où sont observés des dépassements de valeurs limites de qualité de l’air, un plan relatif à la qualité de l’air permettant de ramener les concentrations en dioxyde d’azote et en particules fines PM$_{10}$ sous ces valeurs limites avant le 31 mars 2018. Le Ministre chargé de l’environnement a demandé à chaque Préfet concerné, dont l’Île-de-France, d’établir, d’ici le 31 mars 2018, une feuille de route. Cette feuille de route préparée avec les collectivités franciliennes, complète les défis du PPA et permet de coordonner les actions de tous les acteurs de la qualité de l’air et d’amplifier la baisse des émissions visée par le PPA.

Le PPA dans son contexte réglementaire français

Le PPA d’Île-de-France révisé s’inscrit, d’une part, dans un cadre réglementaire européen, mais aussi dans un canevas législatif et réglementaire français. Il s’articule avec d’autres plans et schémas régionaux et nationaux.

Le PPA qui relève de la compétence des Préfets, s’articule avec d’autres compétences préfectorales, ainsi qu’avec des compétences assumées par d’autres acteurs. La qualité de l’air est en effet une thématique par essence transversale, puisque tous les secteurs et tous les citoyens sont émetteurs de substances polluantes. Cette transversalité se retrouve dans le portage des politiques publiques de lutte contre la pollution de l’air.
En effet, plusieurs acteurs conduisent des politiques visant l’amélioration de la qualité de l’air qui peuvent prendre la forme de réglementations, de plans ou schémas, d’initiatives ou d’activités. Il n’est pas possible de citer tous ces acteurs, mais quelques exemples peuvent être évoqués.

- Au niveau national, le ministère en charge de l’environnement définit la législation en la matière et élabore notamment le Plan National de Réduction des Emissions de polluants de l’atmosphère. Ce plan trouvera une traduction au niveau régional à travers les réglementations, les aides ou les actions qui y sont prouvées et qui seront mises en œuvre par les directions régionales de ce ministère (DRIEE, DRIEA) ou les directions d’autres ministères (DRIAAF, DGAC...) ou par les collectivités locales. L’annexe 5 démontre la cohérence entre ce PREPA et le PPA. Le ministère de l’intérieur et les préfectures interviennent plus particulièrement sur les mesures d’urgence et de circulation notamment lors des pics de pollution. D’autres ministères élaborent des politiques qui sont bénéfiques pour la qualité de l’air ou interviennent indirectement sur cette thématique (Ministère en charge de l’agriculture par l’intermédiaire du plan écophyto ou de la réglementation sur les installations dont il a la charge, le ministère en charge de la santé …).

- Enfin, parmi les acteurs, citons les agences telles que l’ADEME qui apportent des aides à certains secteurs et les associations de surveillance de la qualité de l’air (AIR-PARIF) ou de l’environnement.

Le PPA n’a pas vocation à reprendre l’ensemble des actions mises en œuvre ou prévues par l’ensemble de ces échelons qui coexistent et sont bénéfiques pour la qualité de l’air.

Arrêté par le Préfet de la région Île-de-France le 14 décembre 2012, le Schéma Régional Climat, Air, Energie d’Île-de-France fixe 17 objectifs et 58 orientations stratégiques pour le territoire régional en matière de réduction des consommations d’énergie et des émissions de gaz à effet de serre, d’amélioration de la qualité de l’air, de développement des énergies renouvelables et d’adaptation aux effets du changement climatique. Il définit les trois grandes priorités régionales en matière de climat, d’air et d’énergie qui ont toutes un impact sur la qualité de l’air :

- le renforcement de l’efficacité énergétique des bâtiments (réduction des émissions liées au chauffage),
- le développement du chauffage urbain alimenté par des énergies renouvelables et de récupération (réduction des émissions liées au chauffage. Le recours au chauffage au bois encouragé par le SRCAE doit cependant s’envisager dans des conditions de respect de la qualité de l’air (l’usage du bois combustible dans les équipements individuels de chauffage domestique peut être générateur de particules. En Île-de-France, il représente 29% des émissions de PM$_{10}$ et 41% des émissions de PM$_{2.5}$),
- la réduction de 20% des émissions de gaz à effet de serre du trafic routier, combinée à une forte baisse des émissions de polluants atmosphériques (réduction des émissions liées au trafic).

Figure 17 : Articulation entre le PPA et les autres plans et schémas
1 Les hypothèses pour modéliser émissions et concentrations en 2020

La modélisation des concentrations ne peut se faire qu’à partir d’un inventaire des émissions de polluants.

1.1 Augmentation de la population et des emplois

L’IAU, en lien avec l’INSEE, s’est engagé dans une démarche visant à construire, de façon partagée, un jeu de données « Population et Emploi » (P+E) à horizon 2030. L’objectif de cette démarche est d’éclairer l’avenir socio-économique de l’Île-de-France, pour faciliter les prises de décisions en tenant compte des dernières évolutions ; ces modélisations tiennent compte d’une approche régionale cohérente calée sur l’actualisation du Schéma Directeur Régional d’Île-de-France (SDRIF). Ces données alimentent notamment les modélisations effectuées par le Syndicat de la Région Île-de-France (SRU), mais aussi les modélisations de trafic réalisées par la DRIEA dans le cadre de la révision du PPA.

1.2 Evolution de l’aménagement

Le projet de développement spatial de l’Île-de-France tel que le prévoit le Schéma Directeur de la Région Île-de-France (SDRIF) repose sur 3 piliers : une métropole plus connectée avec un système de transports plus maillé et mieux hiérarchisé, une multipolarité plus affirmée notamment autour des gares et une valorisation et préservation des espaces naturels et agricoles.

Ces projets de développement de pôles d’attractivité économique conduiront à une modification des déplacements (domicile-travail, marchandises, nouveau maillage...) et de l’urbanisation environnante (création de logements, services …). Cependant, si leur impact local est important, les nouveaux grands projets ayant 2020 pour horizon de réalisation n’ont pas été pris en compte dans les modélisations de trafic régionales utilisées pour le PPA.

1.3 Augmentation des déplacements en transports en commun

La modélisation à horizon 2020 réalisée dans le cadre des scénarisations du PPA ne prend pas en compte les objectifs du PDUIF à horizon 2020. Les résultats sont donc à interpréter comme reflétant le prolongement d’une situation tendancielle d’évolution de la population et des emplois, mais pas des comportements. Les résultats de cette modélisation indiquent que le nombre de déplacements en transport en commun (TC) connaîtrait une hausse de 6,2% en heure de pointe du matin, passant en 2020 à 1,35 millions de déplacements par heure. Le nombre de kilomètres parcourus par les déplacements TC augmenterait de 7,1% (18,6 millions de voyageurs.km par heure en 2020), traduisant une hausse de la distance moyenne des trajets.
1.4 Augmentation moindre du trafic routier

La croissance de la population francilienne entraîne une hausse équivalente du nombre total de déplacements des Franciliens (en transports en commun et sur la route). Sur les routes, en heure de pointe du matin (l’approche est similaire à l’heure de pointe du soir), le nombre de déplacements en véhicule particulier augmenterait de 4,1%, : ainsi, bien que le trafic routier soit en croissance, cette hausse reste cependant moindre que l’augmentation de la population, soulignant que de moins en moins de Franciliens utilisent un véhicule particulier dans leurs déplacements. Le nombre de kilomètres parcourus selon ce mode augmenterait de 3,4% (18,6 millions de véhicules km par heure en 2020), traduisant une baisse de la distance moyenne des déplacements en voiture.

Au total, le nombre de kilomètres roulés en véhicule motorisé en Ile-de-France augmenterait de 3% entre 2014 et 2020. La carte ci-dessous montre l’évolution du trafic routier d’ici 2020 en UVP (unités de véhicules particuliers) : cette unité permet de prendre en compte les différents types de véhicules, avec 1 UVP pour un véhicule particulier ou une camionnette, 2 UVP pour un poids-lourd de plus de 3,5t et 0,3 UVP pour les cycles. L’augmentation du trafic routier ainsi modélisé représente une hypothèse conservatrice puisque le bilan à mi-parcours du PDUIF note une baisse de -0,5% en moyenne par an sur la région.

Figure 18 : Trafic routier sur les grands axes franciliens en 2020
1.5 Evolution du parc automobile

Le parc technologique à horizon 2020, c'est-à-dire la répartition des véhicules par motorisation (diesel, essence, GNV, électrique ainsi que par normes EURO), a été constitué à partir du parc de référence 2014 et de projections nationales réalisées par le CITEPA.

L'évolution des immatriculations impacte le parc roulant en participant au renouvellement des véhicules. La tendance des nouvelles immatriculations indique un recul de la motorisation diesel dans les nouveaux véhicules mis en circulation. Le parc roulant évolue donc également dans cette direction, mais moins rapidement puisque les nouveaux véhicules immatriculés dans l'année ne constituent qu'une partie des véhicules circulant effectivement sur le réseau routier.

Selon ces projections, les véhicules électriques, GPL, et GNV voient leur part augmenter fortement en 2020 par rapport à la situation de référence (kilométrage multiplié par 3 pour les véhicules particuliers et les véhicules utilitaires légers, par 10 pour les cars et les bus). La part des véhicules particuliers diesel diminue, passant de 47 à 42% des kilomètres roulés, tandis que celle des voitures particulières essence augmente, passant de 23 à 27% des kilomètres roulés (toutes catégories de véhicules). Ces projections tiennent compte d'une tendance actuelle sans prendre en compte l'impact des annonces faites en 2017 dans le cadre des plans climat national et parisien.

1.6 De nombreuses évolutions réglementaires

Des épisodes de pollution plus nombreux à la suite d’un abaissement des seuils

La persistance se définit depuis 2016 lorsqu’un dépassement du seuil d’information et de recommandation est prévu pour le jour même et le lendemain. La persistance s’applique lors d’épisodes de pollution aux particules fines PM$_{10}$, et à l’ozone ; pour le dioxyde d’azote NO$_2$, il existe une notion de persistance dans la définition des seuils, mais elle est déclenchée plus tardivement que la persistance aux particules et à l’ozone. En 2014, la persistance se définissait par un constat de dépassement durant deux jours consécutifs et une prévision de dépassement pour le jour même et le lendemain, et qu’elle ne s’appliquait pas à l’ozone.

Par ailleurs, la modification de 2016 entraîne aussi la suppression de l’effet « yo-yo » qui se caractérisait par des suspensions et reprises des mesures d’urgence au gré des variations de concentrations lors d’un même épisode de pollution. Depuis 2016, les procédures préfectorales sont maintenues pour toute la durée de l’épisode même en cas de passage sous les seuils.

Ces modifications des règles de déclenchement des procédures d’urgence pourraient entrainer, en moyenne, une multiplication par trois du nombre d’épisodes de pollution, augmentation qui ne correspond pas à une dégradation de la qualité de l’air mais à une modification de la définition d’un épisode de pollution, comme cela s’est produit en 2011.

La circulation différenciée pour remplacer la circulation alternée

L’introduction des certificats qualité de l’air « Crit’Air » permet de mettre en œuvre la circulation différenciée en lieu et place de la circulation alternée. La circulation différenciée consiste en l’interdiction de circuler, en cas de pic de pollution, des catégories de véhicules les plus polluants, à l’intérieur du périmètre défini par la A86.
Il s’agit d’un dispositif qui ne peut être mis en œuvre que lors d’un épisode de pollution, il ne correspond pas aux restrictions de circulation pérennes qui peuvent être mises en place dans les zones à circulation restreinte, et il n’est pas pris en compte dans les exercices de modélisation à horizon 2020.

Airparif a estimé les émissions de polluants qui seraient évitées en cas de mise en œuvre de ce dispositif. La circulation différenciée est particulièrement efficace en cas de pic de pollution aux particules fines ou au dioxyde d’azote, comme l’indique le tableau 19. Le détail de l’analyse de la mise en place de la circulation différenciée se trouve en annexe VIII, ainsi qu’une comparaison avec la zone à circulation restreinte.

Tableau 20 : Part du trafic et des émissions par classe de véhicules

<table>
<thead>
<tr>
<th>Véhicules interdits</th>
<th>Part des veh.km parcourus dans la zone intra A86</th>
<th>Part des émissions de PM$_{10}$ provenant du trafic routier dans la zone intra A86</th>
<th>Part des émissions de NO$_x$ provenant du trafic routier dans la zone intra A86</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non classés</td>
<td>2%</td>
<td>5%</td>
<td>7%</td>
</tr>
<tr>
<td>CQA 5</td>
<td>4%</td>
<td>9%</td>
<td>13%</td>
</tr>
<tr>
<td>CQA 4</td>
<td>9%</td>
<td>15%</td>
<td>17%</td>
</tr>
<tr>
<td>CQA 3</td>
<td>27%</td>
<td>39%</td>
<td>34%</td>
</tr>
<tr>
<td>CQA 2</td>
<td>42%</td>
<td>24%</td>
<td>27%</td>
</tr>
<tr>
<td>CQA 1+0</td>
<td>16%</td>
<td>8%</td>
<td>2%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>
2 Fil de l’eau 2020 : une amélioration nette grâce à nos actions en cours

Le scénario fil de l’eau représente l’évolution tendancielle des émissions et des concentrations, ne prenant pas en compte les mesures définies par le nouveau PPA. L’ensemble des hypothèses prises en compte dans chaque secteur est détaillé dans le rapport Airparif.

2.1 Fil de l’eau 2020 : plus de 25 % de réduction des émissions

L’évaluation des émissions en 2020 ne peut être comparée à l’évaluation présentée dans le PPA 2013 en raison de changements méthodologiques.

Augmentation des émissions du transport aérien

Le trafic aérien, en nombre de passagers et quantité de fret transporté, va croître d’ici 2020. En revanche, les hypothèses prises dans le cadre du dernier Contrat de Régulation Economique (2016-2020) prévoient que cette augmentation se fera à nombre de mouvements quasi constant. Le nombre de mouvements se maintiendrait donc au niveau de 2015 avec un peu moins de 700 000 mouvements pour Paris-Charles-de-Gaulle et Paris-Orly après avoir culminé à 790 000 mouvements en 2008. L’évolution du trafic passagers et fret sur Paris-Orly où le nombre de mouvements est déjà plafonné et à Paris-CDG découle d’une augmentation de l’emport moyen de l’ordre de 12% et de la taille des aéronefs.

Cela conduit à une hausse des émissions d’oxydes d’azote et de particules fines. Les autres secteurs affichant une tendance à la baisse, cette légère augmentation dans l’aérien a pour conséquence d’augmenter sa contribution aux émissions régionales. L’estimation des émissions de ce secteur en 2020 sont les suivantes :

Tableau 21 : Évaluation prospective des émissions de l’aérien en Île-de-France en 2020

<table>
<thead>
<tr>
<th>2020</th>
<th>NO\textsubscript{X}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
<th>COVNM</th>
<th>NH\textsubscript{3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions – t/an</td>
<td>7851</td>
<td>243</td>
<td>210</td>
<td>824</td>
<td>-</td>
</tr>
<tr>
<td>Proportions des émissions régionales</td>
<td>10%</td>
<td>2%</td>
<td>2%</td>
<td>1%</td>
<td>-</td>
</tr>
<tr>
<td>Evolution par rapport à 2014</td>
<td>+4%</td>
<td>+2%</td>
<td>+4%</td>
<td>+3%</td>
<td>-</td>
</tr>
</tbody>
</table>

Stabilisation des émissions de l’agriculture

Dans le scénario fil de l’eau, il a été supposé que le niveau d’activité du secteur en Île-de-France restait identique à celui de 2014. Il n’y a pas d’évolution notable des pratiques prises en compte. Les autres secteurs (hors aérien) diminuent leurs émissions, notamment de NO\textsubscript{2} et PM\textsubscript{10}, ce qui a pour conséquence que la part du secteur agricole dans les émissions régionales augmente par rapport à la référence.
Tableau 22 : Évaluation prospective des émissions de l’agriculture en Île-de-France en 2020

<table>
<thead>
<tr>
<th>2020</th>
<th>NO\textsubscript{X}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
<th>COVNM</th>
<th>NH\textsubscript{3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions – t/an</td>
<td>3069</td>
<td>2779</td>
<td>663</td>
<td>195</td>
<td>10175</td>
</tr>
<tr>
<td>Proportions des émissions régionales</td>
<td>4%</td>
<td>18%</td>
<td>7%</td>
<td>0%</td>
<td>92%</td>
</tr>
<tr>
<td>Evolution par rapport à 2014</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

\textbf{Diminution des émissions industrielles}

Deux centres de production thermique auront fermé (Vitry-sur-Seine et Porcheville) d’ici 2020. Au vu des résultats des contrôles effectués sur le respect de la réglementation relative aux installations de combustion de 2013, 30% des installations de 2 à 50 MW ont été considérées comme ne respectant pas encore ces réglementations (avec 20% d’excès). Une augmentation des activités productrices de NH\textsubscript{3} et COVNM, précurseurs de particules et d’ozone, est à prévoir selon les projections nationales.

Tableau 23 : Évaluation prospective des émissions de l’industrie en Île-de-France en 2020

<table>
<thead>
<tr>
<th>2020</th>
<th>NO\textsubscript{X}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
<th>COVNM</th>
<th>NH\textsubscript{3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions – t/an</td>
<td>Production d’énergie</td>
<td>5684</td>
<td>194</td>
<td>118</td>
<td>3008</td>
</tr>
<tr>
<td></td>
<td>Industrie</td>
<td>4328</td>
<td>757</td>
<td>348</td>
<td>18370</td>
</tr>
<tr>
<td></td>
<td>Traitement des déchets</td>
<td>2156</td>
<td>20</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>12167</td>
<td>971</td>
<td>482</td>
<td>21402</td>
</tr>
<tr>
<td>Proportions des émissions régionales</td>
<td>Production d’énergie</td>
<td>7%</td>
<td>1%</td>
<td>1%</td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td>Industrie</td>
<td>6%</td>
<td>5%</td>
<td>4%</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td>Traitement des déchets</td>
<td>3%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>16%</td>
<td>6%</td>
<td>6%</td>
<td>29%</td>
</tr>
<tr>
<td>Evolution par rapport à 2014</td>
<td>Production d’énergie</td>
<td>-29%</td>
<td>-43%</td>
<td>-31%</td>
<td>-23%</td>
</tr>
<tr>
<td></td>
<td>Industrie</td>
<td>-2%</td>
<td>0%</td>
<td>-2%</td>
<td>+3%</td>
</tr>
<tr>
<td></td>
<td>Traitement des déchets</td>
<td>-3%</td>
<td>-17%</td>
<td>-21%</td>
<td>-33%</td>
</tr>
<tr>
<td></td>
<td>TOTAL</td>
<td>-17%</td>
<td>-13%</td>
<td>-12%</td>
<td>-1%</td>
</tr>
</tbody>
</table>
Diminution des émissions du secteur résidentiel tertiaire et des chantiers

Les émissions de polluants du secteur résidentiel-tertiaire sont basées sur les consommations de combustibles, dont la combustion entraîne des émissions de polluants. De façon générale, l’évolution des consommations de combustibles à horizon 2020 s’appuie sur les hypothèses du SRCAE concernant le mixte énergétique et la rénovation thermique des bâtiments. Un taux de renouvellement des appareils de chauffage au bois vers des appareils Flamme verte 5* de 10 000 appareils par an sur la période a été considéré.

Ces renouvellements permettent notamment de diminuer les émissions de PM$_{10}$ et de COVNM, mais n’ont qu’une influence négligeable sur les émissions de NO$_x$.

Sans données supplémentaires précises, la surface totale des chantiers en 2020 a été considérée comme égale à celle de 2012 (dernier inventaire MOS connu).

Tableau 24 : Évaluation prospective des émissions du secteur résidentiel tertiaire chantiers en Île-de-France en 2020

<table>
<thead>
<tr>
<th></th>
<th>NO$_x$</th>
<th>PM$_{10}$</th>
<th>COVNM</th>
<th>NH$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions – t/an</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Résidentiel tertiaire</td>
<td>11128</td>
<td>4548</td>
<td>24042</td>
<td>0</td>
</tr>
<tr>
<td>dont chauffage au bois</td>
<td>3670</td>
<td></td>
<td>11 080</td>
<td></td>
</tr>
<tr>
<td>Chantiers</td>
<td>1611</td>
<td>2448</td>
<td>5789</td>
<td>0</td>
</tr>
<tr>
<td>Proportions des émissions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Résidentiel tertiaire</td>
<td>15%</td>
<td>29%</td>
<td>32%</td>
<td>0%</td>
</tr>
<tr>
<td>dont chauffage au bois</td>
<td>23%</td>
<td></td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Chantiers</td>
<td>2%</td>
<td>16%</td>
<td>9%</td>
<td>0%</td>
</tr>
<tr>
<td>Evolution par rapport à 2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Résidentiel tertiaire</td>
<td>-13%</td>
<td>-28%</td>
<td>-12%</td>
<td>0%</td>
</tr>
<tr>
<td>Chantiers</td>
<td>-30%</td>
<td>-2%</td>
<td>4%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Diminution des émissions du trafic routier

Il a été supposé que le niveau d’activité de trafic ferroviaire et fluvial n’évoluait pas. Les moteurs des bateaux ont une très longue durée de vie qui explique que l’impact des réglementations EMNR (engins mobiles non routiers) n’a pas été pris en compte.

L’impact des réglementations sur les émissions des véhicules (normes Euro 5 et 6 notamment) et le renouvellement progressif du parc automobile permettent de compenser les effets de l’augmentation du trafic routier : les émissions du secteur routier diminuent à horizon 2020. Les particules fines PM$_{10}$ sont principalement émises à l’échappement, alors que les PM$_{10}$ sont émises à l’échappement ainsi que par abrasion des freins et usure des routes ; l’évolution du parc permet de diminuer les émissions à l’échappement, mais l’augmentation du trafic engendre une augmentation proportionnelle des émissions de PM$_{10}$: c’est pourquoi les PM$_{10}$ diminuent moins que les PM$_{2.5}$.

Alors que l’abrasion et l’usure représentait 40% des émissions de PM$_{10}$ dans la référence, ces phénomènes représentent 60% des émissions de PM$_{10}$ en 2020 : cela souligne l’importance de diminuer le nombre total de véhicules circulant en Île-de-France.
Tableau 25 : Part des veh.km roulés en Ile-de-France (référence 2014 et fil de l’eau 2020)

<table>
<thead>
<tr>
<th></th>
<th>REF</th>
<th>FDE 2020</th>
<th>PART 2014</th>
<th>PART 2020</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP TOTAL</td>
<td>54 478 525 798</td>
<td>55 950 885 061</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>VP Diesel</td>
<td>35 971 943 396</td>
<td>32 943 607 318</td>
<td>66%</td>
<td>59%</td>
</tr>
<tr>
<td>VP Essence</td>
<td>18 001 436 198</td>
<td>21 364 436 762</td>
<td>33%</td>
<td>38%</td>
</tr>
<tr>
<td>VP GPL</td>
<td></td>
<td>354 052 068</td>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>VP GNV</td>
<td>505 146 204</td>
<td>18 670 285</td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>VP Electrique</td>
<td></td>
<td>1 270 118 628</td>
<td></td>
<td>2%</td>
</tr>
<tr>
<td>VUL TOTAL</td>
<td>11 895 670 156</td>
<td>12 208 031 170</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>VUL Diesel</td>
<td>11 666 204 437</td>
<td>11 951 686 509</td>
<td>98%</td>
<td>98%</td>
</tr>
<tr>
<td>VUL Essence</td>
<td>224 877 914</td>
<td>244 129 758</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>VUL Electrique</td>
<td>4 587 805</td>
<td>12 214 903</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>PL Diesel</td>
<td>4 357 963</td>
<td>4 473 879</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Tableau 26 : Évaluation prospective des émissions du transport routier, ferroviaire et fluvial en Ile-de-France en 2020

<table>
<thead>
<tr>
<th></th>
<th>NO\textsubscript{X}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
<th>COVNM</th>
<th>NH\textsubscript{3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emissions – t/an</td>
<td>Transport routier</td>
<td>38 889</td>
<td>3 844</td>
<td>2 679</td>
<td>8 947</td>
</tr>
<tr>
<td></td>
<td>Transport ferroviaire et fluvial</td>
<td>1 085</td>
<td>631</td>
<td>300</td>
<td>119</td>
</tr>
<tr>
<td>Proportions des émissions régionales</td>
<td>Transport routier</td>
<td>51%</td>
<td>25%</td>
<td>28%</td>
<td>12%</td>
</tr>
<tr>
<td></td>
<td>Transport ferroviaire et fluvial</td>
<td>1%</td>
<td>4%</td>
<td>3%</td>
<td>0%</td>
</tr>
<tr>
<td>Evolution par rapport à 2014</td>
<td>Transport routier</td>
<td>-39%</td>
<td>-27%</td>
<td>-35%</td>
<td>-39%</td>
</tr>
<tr>
<td></td>
<td>Transport ferroviaire et fluvial</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>
Diminution des émissions régionales totales

En 2020, selon les évaluations du scénario fil de l’eau explicitées ci-dessus, les émissions de NO\textsubscript{X} et de particules fines diminueront notablement notamment en raison du renouvellement du parc automobile ; les actions portées et les efforts déjà consentis ont un impact réel sur l’amélioration de la qualité de l’air.

Tableau 27 : Évaluation prospective des émissions totales en Île-de-France en 2020 selon le scénario fil de l’eau

<table>
<thead>
<tr>
<th>Emissions – t/an</th>
<th>NO\textsubscript{X}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
<th>COVNLM</th>
<th>NH\textsubscript{4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variation par rapport 2014</td>
<td>-28 %</td>
<td>-18 %</td>
<td>-25 %</td>
<td>-11 %</td>
<td>0 %</td>
</tr>
</tbody>
</table>

Figure 21 : Répartition des émissions par secteur (fil de l’eau 2020)

2.2 Fil de l’eau 2020 : diminution des concentrations de polluants

Une fois l’inventaire prospectif des émissions à horizon 2020 réalisé, Airparif a modélisé les concentrations de polluants. Afin de comparer avec la situation de référence, les conditions météorologiques utilisées dans la modélisation sont celles de l’année 2010. Les conditions aux limites de la région sont imposées par la modélisation nationale de l’INERIS en 2020 ; l’impact des mesures du PREPA n’a pas été pris en compte. Airparif utilise le cadastre des émissions, les conditions météorologiques et les conditions aux limites pour cartographier les concentrations de fond en polluants. Ensuite, la modélisation des concentrations en proximité de trafic est réalisée grâce à l’inventaire des émissions du secteur routier ; le paramètre NO\textsubscript{2}/NO est considéré constant entre la situation de référence et 2020. La modélisation ainsi réalisée correspond à un état théorique tendanciel de la qualité de l’air en 2020 si aucune action supplémentaire à celles déjà entreprises aujourd’hui n’est mise en place.

Le détail des résultats des modélisations est présenté dans le rapport d’Airparif spécifique. Ces modélisations permettent avant tout de comparer des scénarisations entre elles (référence, fil de l’eau, fil de l’eau + PPA et fil de l’eau + PPA + ZCR A86) : notamment, elles ne constituent pas des prévisions permettant de déterminer avec certitude le nombre et la localisation des dépassements des valeurs limites.

D’ici à 2020 et les défis du PPA, les concentrations moyennes annuelles en NO\textsubscript{2} diminuent entre 23 et 29 % selon la zone géographique. Celles des particules fines diminuent entre 17 et 21 %.

Les graphiques suivants illustrent ces baisses.
La modélisation des concentrations en polluants dans le scenario fil de l’eau 2020 ne permet pas d’estimer les dépassements de la valeur limite horaire en \(\text{NO}_2 \) mais permet d’estimer les résultats suivants :

| Tableau 29 : Respect des valeurs limites en 2020 selon le scénario fil de l’eau |
|---------------------------------|-----------------|-----------------|-----------------|
| | **\(\text{NO}_2 \)** | **PM\(_{10}\)** | **PM\(_{2.5}\)** |
| **Valeur limite** | horaire ou | Non modélisable | Respectée en fond mais en baisse de 3 à 5 jours/an | Pas de valeur limite |
| | journalière | | Respectée en fond | |
| **Annuelle** | | | Dépassée en proximité de trafic | |
| | | | | Respectée |

Si, dans le fil de l’eau 2020, la plupart des valeurs limites sont respectées, certaines restent cependant dépassées à proximité des axes routiers.

Dans le scenario fil de l’eau 2020, des Franciliens restent ponctuellement exposés à des dépassements des valeurs limites à proximité des axes routiers.
2.3 Une nouvelle révision du PPA pour accélérer la reconquête de la qualité de l’air

Le Plan de Protection de l’Atmosphère révisé doit permettre de supprimer le nombre de dépassements des valeurs limites qui seront enregistrés par les stations de mesure des concentrations de polluants en 2025. Le nouveau PPA vient en complément des plans nationaux comme le Plan de Réduction des Emissions de Polluants Atmosphériques ou de plans régionaux comme le Plan de Déplacements Urbains d’Île-de-France dont les effets n’ont pas été pris en compte dans la modélisation du PPA.

Une révision basée sur la concertation

La mise au point du PPA a été construite sur la base de l’engagement des différents acteurs locaux et de la concertation avec les parties prenantes. Pour favoriser la mise au point des défis de réduction des émissions sur une base la plus consensuelle et volontaire possible, les travaux ont été partagés en huit groupes de travail rassemblant les parties prenantes et portés par les services de l’Etat.

Chaque groupe de travail (GT) a été présidé par des représentants des acteurs du domaine. Les principes de l’organisation de la révision du PPA sont présentés en annexe IX.

Tableau 29 : Groupes de travail sectoriels

<table>
<thead>
<tr>
<th>SECRÉTARIAT</th>
<th>PRÉSIDENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GT agricole</td>
<td>DRIAAF</td>
</tr>
<tr>
<td>GT aérien</td>
<td>DGAC</td>
</tr>
<tr>
<td>GT industrie</td>
<td>DRIEE</td>
</tr>
<tr>
<td>GT résidentiel/Tertiaire et chantiers</td>
<td>DRIHL</td>
</tr>
<tr>
<td>GT transports</td>
<td>DRIEA</td>
</tr>
</tbody>
</table>

Tableau 30 : Groupes de travail transversaux

<table>
<thead>
<tr>
<th>SECRÉTARIAT</th>
<th>PRÉSIDENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cellule santé</td>
<td>ARS</td>
</tr>
<tr>
<td>GT collectivités</td>
<td>ADEME Île-de-France</td>
</tr>
<tr>
<td>GT actions citoyennes</td>
<td>SGAR</td>
</tr>
</tbody>
</table>

Ont ainsi été proposés à l’issue des travaux de chacun des groupes de travail, 25 défis déclinés en 46 actions concrètes, pragmatiques et réalisables ; ces défis seront portés par l’ensemble des acteurs concernés. L’impact des défis, en termes de potentiel de réduction d’émission, n’est pas toujours quantifiable : les défis de formation par exemple ne peuvent être chiffrés. Ces défis font partie intégrante du PPA mais leur contribution à la réduction supplémentaire d’émission de polluants d’ici 2020 ne peut être évaluée.

Le tableau 32 suivant présente ainsi l’ensemble des défis, en identifiant ceux qui peuvent être évalués et dont l’effet est donc inclus dans la modélisation à horizon 2020, de ceux qui ne peuvent être évalués et dont l’effet ne peut être pris en compte dans la modélisation à horizon 2020. Ces défis seront mis en œuvre d’ici 2020 et auront un impact positif sur la qualité de l’air.

Tableau 31 : Les défis du PPA

<table>
<thead>
<tr>
<th>DÉFIS ÉVALUABLES</th>
<th>DÉFIS NON-ÉVALUABLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Données sur les émissions est quantifiable</td>
<td>Données sur les émissions n’est pas quantifiable</td>
</tr>
<tr>
<td>Diminuer les émissions des aéronefs au roulage</td>
<td>Diminuer les émissions des APU et des véhicules et engins de pistes au sol</td>
</tr>
<tr>
<td>Favoriser les bonnes pratiques associées à l’utilisation de l’urée solide</td>
<td>Améliorer la connaissance des émissions des avions</td>
</tr>
<tr>
<td>Renforcer la surveillance des installations de combustion (2-50MW)</td>
<td>Former les agriculteurs au cycle de l’azote et à ses répercussions en termes de pollution atmosphérique</td>
</tr>
<tr>
<td>Réduire les émissions de NOx issues des installations d’incinération d’ordures ménagères ou de co-incinération de CSR</td>
<td>Évaluer l’impact du fractionnement du second apport sur céréales d’hiver sur les émissions de NH3</td>
</tr>
<tr>
<td>Réduire les émissions de NOx des installations de combustion de biomasse (2-100MW) et des installations de co-incinération de CSR</td>
<td>Réduire les émissions de particules des installations de combustion à la biomasse et des installations de co-incinération de CSR</td>
</tr>
<tr>
<td>Favoriser le renouvellement des équipements anciens de chauffage individuel au bois</td>
<td>Élaborer une charte bois énergie impliquant l’ensemble de la chaîne de valeur (des professionnels au grand public) et favoriser les bonnes pratiques</td>
</tr>
<tr>
<td>Elaborer une charte chantiers propres impliquant l’ensemble des acteurs de la chaîne de valeur</td>
<td>Favoriser une logistique plus respectueuse de l’environnement</td>
</tr>
<tr>
<td>Accompagner la mise en place de zones à circulation restreinte en Ile-de-France</td>
<td>Harmoniser à la baisse les vitesses maximales autorisées sur les voies structurantes d’agglomérations d’Île-de-France</td>
</tr>
<tr>
<td>Elaborer des plans de mobilité par les entreprises et les personnes morales de droit public</td>
<td>Soutenir l’élaboration et la mise en œuvre de plans locaux de déplacements et une meilleure prise en compte de la mobilité durable dans l’urbanisme</td>
</tr>
<tr>
<td>Favoriser le covoiturage en Ile-de-France</td>
<td>Réduire les émissions en cas d’épisode de pollution</td>
</tr>
<tr>
<td>Accompagner le développement et l’usage des véhicules à faibles émissions</td>
<td>Fédérer, mobiliser les collectivités et coordonner leurs actions en faveur de la qualité de l’air</td>
</tr>
<tr>
<td>Favoriser l’usage de modes de transports actifs</td>
<td>Mettre en œuvre le plan « Changeons d’Air » du Conseil régional</td>
</tr>
<tr>
<td></td>
<td>Engager le citoyen francilien dans la reconquête de la qualité de l’air</td>
</tr>
</tbody>
</table>

Analyse multicritère des défis

Les défis évaluables ont été soumis à une analyse multicritère. Cette analyse se base sur quatre critères :
- potentiel de réduction des émissions en 2020 ;
- efficacité économique en considérant les coûts totaux annuels et les coûts à la tonne de polluant évitée ;
- faisabilité juridique ;
- acceptabilité sociale.

Le potentiel de réduction des émissions de polluants est estimé par Airparif sur la base des hypothèses de dimensionnement des défis discutées en groupe de travail sectoriel. Les coûts de mise en place des défis et les coûts à la tonne de polluant évitée, la faisabilité juridique et l’acceptabilité sociale sont évaluées par l’assistance à maîtrise d’ouvrage (CITEPA, AjBD et INERIS).
L’analyse multicritère des défis s’appuie par ailleurs sur des informations qualitatives (juridique, sociétal). Pour pouvoir comparer les défis entre eux, une analyse multicritère de type « surclassement de synthèse » est mise en place, et appliquée à ces défis, elle est détaillée en annexe X et les résultats sont présentés en annexe XIII.

3 Scenario 2020 + PPA : le PPA accélère l’amélioration de la qualité de l’air

3.1 L’impact de 12 défis du PPA : plus de 35% de baisse des émissions par rapport à 2014

Les défis ont tout d’abord été évalués individuellement afin de déterminer la réduction d’émission que chaque défi pouvait permettre d’envisager à horizon 2020 par rapport au fil de l’eau. Cette évaluation individuelle a permis de procéder à la hiérarchisation multicritère, présentée dans chaque fiche action, pour identifier les principaux leviers permettant de réduire l’impact de chaque secteur dans les émissions franciliennes de polluants. Ensuite, ils ont été agrégés afin de construire une scénarisation cohérente à horizon 2020.

Dans le résidentiel tertiaire et les chantiers, 3 défis permettent de limiter les émissions des installations notamment en favorisant le renouvellement des foyers domestiques au bois et par une charte pour les chantiers. En 2020, par rapport au scénario fil de l’eau, les émissions de NO\textsubscript{x} de l’ensemble des activités concernées diminuent de près de 5%. Pour les PM\textsubscript{10} et PM\textsubscript{2.5} les émissions diminuent de plus 6%. Le tableau suivant présente les émissions de ce secteur en 2020 avec les mesures du PPA.

Tableau 32 : Évaluation prospective des émissions du résidentiel tertiaire et des chantiers en Île-de-France en 2020 avec les mesures du PPA

<table>
<thead>
<tr>
<th>2020</th>
<th>NO\textsubscript{x}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
<th>COVNM</th>
<th>NH\textsubscript{3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions – t/an</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Résidentiel tertiaire</td>
<td>10974</td>
<td>4298</td>
<td>4121</td>
<td>23533</td>
<td>0</td>
</tr>
<tr>
<td>Chantiers</td>
<td>1121</td>
<td>2265</td>
<td>859</td>
<td>5789</td>
<td>0</td>
</tr>
<tr>
<td>Proportions des émissions régionales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Résidentiel tertiaire</td>
<td>17%</td>
<td>30%</td>
<td>47%</td>
<td>32%</td>
<td>0%</td>
</tr>
<tr>
<td>Chantiers</td>
<td>2%</td>
<td>16%</td>
<td>10%</td>
<td>8%</td>
<td>0%</td>
</tr>
<tr>
<td>Réductions en 2020 par les mesures PPA / scénario fil de l’eau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Résidentiel tertiaire</td>
<td>-1%</td>
<td>-5,7%</td>
<td>-5,9%</td>
<td>-2%</td>
<td>-</td>
</tr>
<tr>
<td>Chantiers</td>
<td>-4,4%</td>
<td>-4%</td>
<td>-1,8%</td>
<td>0%</td>
<td>-</td>
</tr>
<tr>
<td>Total résidentiel</td>
<td>-4,8%</td>
<td>-6,3%</td>
<td>-6,3%</td>
<td>-1,7%</td>
<td>-</td>
</tr>
</tbody>
</table>

En ce qui concerne les transports routiers, les nombreux défis permettent de limiter les émissions de façon conséquente. En 2020, par rapport au scénario fil de l’eau, les émissions de NO\textsubscript{x} du transport routier diminuent de 24% avec notamment la mise en place d’une zone à circulation réduite (ZCR) sur Paris. Pour les PM\textsubscript{10} la réduction est de -18% et pour les PM\textsubscript{2.5} de -22%. Le tableau suivant présente les émissions de ce secteur en 2020 avec les mesures du PPA. L’ensemble des hypothèses détaillées ayant permis ces estimations est présenté dans les annexes XIV à XXI.
Tableau 33 : Part des veh.km roulés en Ile-de-France (référence, fil de l’eau, PPA)

<table>
<thead>
<tr>
<th></th>
<th>REF</th>
<th>FDE 2020</th>
<th>FDE+PPA</th>
<th>PART 2014</th>
<th>PART 2020</th>
<th>FDE+PPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>VP TOTAL</td>
<td>54 478 525 798</td>
<td>55 950 885 061</td>
<td>55 805 136 369</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>VP Diesel</td>
<td>35 971 943 396</td>
<td>32 943 607 318</td>
<td>32 223 581 638</td>
<td>66%</td>
<td>59%</td>
<td>58%</td>
</tr>
<tr>
<td>VP Essence</td>
<td>18 001 436 198</td>
<td>21 364 436 762</td>
<td>21 650 144 997</td>
<td>33%</td>
<td>38%</td>
<td>39%</td>
</tr>
<tr>
<td>VP GPL</td>
<td>354 052 068</td>
<td>364 308 951</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>VP GNV</td>
<td>505 146 204</td>
<td>18 670 285</td>
<td>18 921 623</td>
<td>1%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>VP Electrique</td>
<td>1 270 118 628</td>
<td>1 548 179 160</td>
<td>100%</td>
<td>2%</td>
<td>3%</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>FDE 2020</th>
<th>FDE+PPA</th>
<th>PART 2014</th>
<th>PART 2020</th>
<th>FDE+PPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>VUL TOTAL</td>
<td>11 895 670 156</td>
<td>12 208 031 170</td>
<td>12 120 272 476</td>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>VUL Diesel</td>
<td>11 666 204 437</td>
<td>11 951 686 509</td>
<td>11 874 307 915</td>
<td>98%</td>
<td>98%</td>
</tr>
<tr>
<td>VUL Essence</td>
<td>224 877 914</td>
<td>244 129 758</td>
<td>234 006 000</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>VUL Electrique</td>
<td>4 587 805</td>
<td>12 214 903</td>
<td>11 958 561</td>
<td>0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Tableau 34 : Évaluation prospective des émissions du transport routier en Ile-de-France en 2020 avec les mesures du PPA (ainsi que la ZCR Paris)

Dans l’industrie, quatre défis permettent de limiter les émissions des installations en mettant en place des valeurs limites plus contraignantes pour certaines installations. Les détails de l’analyse multicritère des défis de l’industrie sont présentés en annexe 21. En 2020, par rapport au scénario fil de l’eau, les émissions de NO\textsubscript{x} de l’ensemble des activités concernées diminuent de 8%. Pour les PM\textsubscript{10} et PM\textsubscript{2.5}, les émissions diminuent de 1 et 2% respectivement. Le tableau suivant présente les émissions de ce secteur en 2020 avec le PPA.

Figure 26 : Répartition des émissions par secteur (fil de l’eau + PPA 2020)
DEUXIÈME PARTIE
Un plan d’actions pour l’Île-de-France

Tableau 35 : Évaluation prospective des émissions de l’industrie en Île-de-France en 2020 avec les mesures du PPA

<table>
<thead>
<tr>
<th>2020</th>
<th>NO\textsubscript{X}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
<th>COVNM</th>
<th>NH\textsubscript{3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions – t/an</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production d’énergie</td>
<td>5315</td>
<td>184</td>
<td>110</td>
<td>3004</td>
<td>0</td>
</tr>
<tr>
<td>Industrie</td>
<td>4205</td>
<td>757</td>
<td>347</td>
<td>18370</td>
<td>258</td>
</tr>
<tr>
<td>Traitement des déchets</td>
<td>1669</td>
<td>20</td>
<td>16</td>
<td>24</td>
<td>12</td>
</tr>
<tr>
<td>Proportions des émissions régionales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production d’énergie</td>
<td>8%</td>
<td>1%</td>
<td>1%</td>
<td>4%</td>
<td>0%</td>
</tr>
<tr>
<td>Industrie</td>
<td>6%</td>
<td>5%</td>
<td>4%</td>
<td>25%</td>
<td>2%</td>
</tr>
<tr>
<td>Traitement des déchets</td>
<td>3%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Réductions en 2020 par les mesures PPA / scénario fil de l’eau</td>
<td>Total</td>
<td>-8%</td>
<td>-1%</td>
<td>-2%</td>
<td>0%</td>
</tr>
</tbody>
</table>

Pour le secteur aérien, deux défis envisagent la diminution des émissions lors du roulage des aéronefs et de l’usage des APU. Le différentiel de diminution entre les secteurs explique l’augmentation relative des contributions régionales de l’aérien et de l’agriculture. En 2020, par rapport au scénario fil de l’eau les émissions de NO\textsubscript{X}, PM\textsubscript{10} et PM\textsubscript{2.5} diminuent de 3%. Le tableau suivant présente les émissions de ce secteur en 2020 avec le PPA.

Tableau 36 : Évaluation prospective des émissions de l’aérien en Île-de-France en 2020 avec les mesures du PPA

	NO\textsubscript{X}	PM\textsubscript{10}	PM\textsubscript{2.5}	COVNM	NH\textsubscript{3}
Emissions – t/an	7636	237	200	720	0
Proportion des émissions régionales	12%	2%	2%	1%	-
Réductions en 2020 par les mesures PPA / scénario fil de l’eau	-2,7%	-2,5%	-2,5%	-7%	-

Dans l’agriculture, seul le défi 1 est évaluable. Par rapport au scénario fil de l’eau, les émissions NH\textsubscript{3} diminuent de 5,5%. Le tableau présente les émissions de ce secteur en 2020 avec ce défi.

Tableau 37 : Évaluation prospective des émissions de l’agriculture en Île-de-France en 2020 avec les mesures du PPA

	NO\textsubscript{X}	PM\textsubscript{10}	PM\textsubscript{2.5}	COVNM	NH\textsubscript{3}
Emissions – t/an	2965	2779	663	195	9620
Proportion des émissions régionales	5%	19%	8%	0%	92%
Réductions en 2020 par les mesures PPA / scénario fil de l’eau	-3,4%	0%	0%	0%	-5,5%
3.2 Evaluation des émissions totales

Dans le secteur des transports, certains défis ne sont pas additionnables directement : les plans de mobilité, le développement du covoiturage et des modes actifs. Les plans de mobilité ont été évalués à travers l’impact direct sur les déplacements domicile-travail (véhicules particuliers et deux-roues motorisés), avec des reports notamment sur le covoiturage et les modes actifs. Une partie des déplacements évités via l’action « plans de mobilité » par le covoiturage est donc déjà comptabilisée dans la mesure « covoiturage ». De même pour la mesure « modes actifs ». On ne peut ainsi pas agréger simplement les défis ensemble. Les explications détaillées sont fournies en annexe 20.

La réalisation des défis du PPA (qui incluent la mise en place de la zone à circulation restreinte de Paris) aura des impacts conséquents sur la qualité de l’air en réduisant de 15% les émissions de NO\textsubscript{X}, de 7% les PM\textsubscript{10} et de 9% les PM\textsubscript{2.5} par rapport au scenario fil de l’eau 2020, sans mesures du PPA.

Tableau 38 : Évaluation prospective des émissions totales en Île-de-France en 2020 avec les mesures du PPA

<table>
<thead>
<tr>
<th></th>
<th>NO\textsubscript{X}</th>
<th>PM\textsubscript{10}</th>
<th>PM\textsubscript{2.5}</th>
<th>COVNM</th>
<th>NH\textsubscript{3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions – t/an</td>
<td>64695</td>
<td>14330</td>
<td>8709</td>
<td>72572</td>
<td>10452</td>
</tr>
<tr>
<td>Variation par rapport à 2020 (scénario FDE)</td>
<td>-15%</td>
<td>-7%</td>
<td>-9%</td>
<td>-3%</td>
<td>-5%</td>
</tr>
<tr>
<td>Variation par rapport à 2014</td>
<td>-39%</td>
<td>-24%</td>
<td>-32%</td>
<td>-14%</td>
<td>-5%</td>
</tr>
</tbody>
</table>

3.3 Modélisation des concentrations en polluants en 2020 avec le PPA

Le cadastre des émissions « fil de l’eau (FDE) + PPA » présenté au paragraphe précédent représente les émissions de polluants à horizon 2020 avec la mise en œuvre des défis du PPA. Ce cadastre ne tient pas compte des défis non évaluables, ni du déploiement des Plans climat air énergie territoriaux. A partir de ce cadastre des émissions, Airparif peut modéliser l’état de la qualité de l’air en conservant les mêmes conditions aux limites et conditions météorologiques que pour le fil de l’eau : cela permet une comparaison directe des deux modélisations. La modélisation ainsi réalisée correspond à un état théorique de la qualité de l’air en 2020 à la suite de la mise en place des actions du PPA.

Les modélisations permettent d’obtenir les résultats suivants pour le scenario fil de l’eau + PPA.

Figure 27 : Evolution des concentrations moyennes annuelles de PM\textsubscript{10} en 2020 avec le PPA sur les stations à proximité de trafic et les stations de fond

Tableau 40 : Conformité de l’Île-de-France aux valeurs limites européennes (modélisation 2020 + PPA)

<table>
<thead>
<tr>
<th>Polluant</th>
<th>NO₂</th>
<th>PM₁₀</th>
<th>PM₂.₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valeur limite</td>
<td>horaire ou journalière</td>
<td>Non modélisable</td>
<td>Respectée en fond</td>
</tr>
<tr>
<td></td>
<td>annuelle</td>
<td>Respectée en fond</td>
<td>Dépassée en proximité de trafic mais baisse des concentrations</td>
</tr>
</tbody>
</table>

L’amélioration de la qualité de l’air est plus visible lorsque l’on s’intéresse à l’exposition des citoyens : malgré une amélioration de la qualité de l’air grâce à la mise en œuvre des défis du PPA, des franciliens restent ponctuellement exposés à des dépassements des valeurs limites. Le PPA permet de réduire le nombre de personnes exposées de 870 000 à 200 000 pour les NO₂ et de 540 000 à 300 000 pour les PM₁₀.
Les défis du plan de protection de l’atmosphère qui ont pu être intégrés dans la modélisation permettent de réduire le nombre de franciliens exposés à des dépassements mais ne permettent pas de supprimer les dépassements des valeurs limites sur les stations en proximité de trafic, notamment en dioxyde d’azote et en particules fines PM_{10}. D’autre part, les situations de dépassement en proximité du trafic devront être examinées au cas par cas par les communes concernées dans le cadre des plans climat air énergie. Ces communes pourront ainsi décider de renforcer les mesures de restriction de circulation.

D’autre part, la diminution des principales sources d’émission, qui sont aujourd’hui des sources diffuses, nécessitera de véritables changements de comportement. Ces changements ne peuvent être évalués quantitativement, et les efforts que le PPA se propose de réaliser dans la formation et dans la communication ne sont pas pris en compte dans ces modélisations. Il n’en reste pas moins qu’une véritable prise de conscience citoyenne est en cours de se passer, et que les actions de sensibilisation du PPA n’en seront que plus efficaces.
Figure 31 : Evolution des concentrations moyennes annuelles en PM₁₀ de 2007 à 2020
Figure 32 : Evolution des concentrations moyennes annuelles en NO₂ de 2006 à 2020
3.4 Les bénéfices sanitaires des 12 défis évaluables du PPA

La modélisation effectuée en 3.3 permet d’évaluer le nombre de Franciliens qui sont exposés à un dépassement des valeurs limites européennes (c’est-à-dire à une mauvaise qualité de l’air), ce qui constitue une première approche des risques sanitaires. Une analyse plus approfondie des impacts sanitaires d’une qualité de l’air dégradée a en outre été réalisée dans le cadre de l’évaluation du plan. Les bénéfices sanitaires grâce aux défis du PPA correspondent à la différence entre les impacts sanitaires associés au scénario « fil de l’eau » et ceux associés au scénario « fil de l’eau + PPA » 2020. Le calcul repose sur le modèle ARP-FR, adaptation d’un outil utilisé par la Commission européenne pour évaluer certaines de ses politiques. A un polluant donné sont associés des effets sur la santé (bronchite, admissions à l’hôpital, mortalité, ...) qui dépendent de la concentration du polluant et de l’âge des personnes exposées. Ces effets sur la santé par polluants ont été évalués grâce à des études épidémiologiques.

Ces relations concentration-réponse n’existent pas pour toutes les pathologies puisqu’elles dépendent des résultats des études épidémiologiques. Or, ces études sont limitées par le fait que les niveaux d’exposition sont de l’ordre des « faibles doses » et multifactoriels. En conséquence, les calculs effectués prennent en compte les impacts sanitaires décrits dans les résultats des études sanitaires européennes et nord-américaines (uniquement sous l’angle de l’impact des PM$_{2.5}$) et une partie des impacts sanitaires du dioxyde d’azote (l’ozone n’a pu être pris en compte).

Les scénarios « fil de l’eau » (FDE) et « fil de l’eau + PPA » (FDE + PPA) ont permis d’évaluer les concentrations en particules et en dioxyde d’azote en Île-de-France en 2020, avec et sans le PPA. En croisant ces données avec les densités de population, le modèle ARP-FR permet de déterminer les valeurs d’un certain nombre d’indicateurs sanitaires détaillés en annexe XII (nombre de morts prématurées, nombre de bronchites, journées de travail perdues...).

A chacun de ces indicateurs est associé un coût unitaire issu de bases de données (Travaux de Hurley et al. 2005, et NewExt 2004), qui permet in fine d’évaluer le coût total des impacts sanitaires relevant de trois catégories : coûts tangibles et observés sur le marché (traitement de bronchites, d’asthme…), coûts d’opportunité (e.g. pertes d’activités domestiques ou de loisirs) et coûts non tangibles et non marchands (mortalité prématurée ou aux années de vie perdues). Le coût total des impacts sanitaires de la pollution sans mise en œuvre du PPA est ainsi évalué à plus de 6,8 milliards d’euros quand celui des impacts sanitaires après mise en œuvre du PPA est estimé à moins de 6,5 milliards d’euros.

Ainsi, la mise en œuvre des 12 défis évaluables du PPA permet :

- d’éviter de perdre 4 000 années de vie par an par rapport au scénario « fil de l’eau » : il s’agit ici de la valeur agrégée de l’augmentation de l’espérance de vie pour la population francilienne en 2020. Statistiquement, cela n’a pas de sens de ramener ce chiffre à la population francilienne pour en déduire le nombre d’années de vie gagnées par chaque Francilien : chaque Francilien ne va pas gagner X mois de vie ; en revanche, certains Franciliens, qui sont susceptibles de faire une crise cardiaque par exemple, la feront plus tardivement ou Mourront d’une autre cause.
- d’éviter environ 240 morts prématurées supplémentaires en 2020 en Île-de-France, même si la pollution de l’air en 2020 aura toujours comme conséquence environ 4 000 morts prématurées par an.
- une réduction des coûts sanitaires liés à la pollution atmosphérique estimée à 382 M€. Si l’on compare ces dépenses évitées au coût de mise en œuvre des défis du PPA (315 M€), il en ressort un bénéfice net pour la société de 65 M€. Ce chiffrage ne prend en compte ni les bénéfices indirects de la mise en œuvre des défis, ni les bénéfices du PPA sur les autres agglomérations qui subissent la pollution importée de l’Île-de-France, ni les bénéfices environnementaux liés à la baisse de la pollution de l’air (moindre impact sur les cultures, sur les bâtiments…).

Ces résultats démontrent d’une part que le coût des impacts sanitaires de la pollution de l’air pour la société est tel que l’investissement pour la mise en œuvre des défis est immédiatement rentabilisé, et d’autre part la nécessité d’aller au-delà des 12 défis modélisés du PPA, via la mise en œuvre des 13 autres défis mais aussi dans la réalisation des Plans Climat air Energie Territoriaux ambitieux par les EPCI concernés.

1. Alpha-RiskPoll France, mis en œuvre à l’INERIS. La version européenne du modèle ARP a été développée par M. Holland et J. Spadaro, EMRC.
5 La solution mise en place pour suivre la mise en œuvre des défis

Le suivi de la conformité aux valeurs limites de qualité de l’air (concentration) fait l’objet d’un suivi grâce aux stations de mesures d’Airparif et d’un bilan annuel de la qualité de l’air en Île-de-France réalisé et publié par Airparif. Il est nécessaire par ailleurs de suivre la mise en œuvre des défis du PPA.

5.1 Un dispositif de suivi concret

Chaque défi du PPA a été décliné en actions construites en y intégrant des éléments structurants permettant de garantir une mise en œuvre concrète et suivie.

La mise en œuvre des 25 défis du PPA sera suivie et pilotée par le Comité de pilotage (COPIL) mis en place pour l’élaboration du PPA et maintenu pour son suivi. La COPIL s’appuiera sur les pilotes des défis, tels que mentionnés sur chaque fiche défi, chargés de la bonne mise en œuvre du défi et de s’assurer de la remontée des indicateurs de suivi définis pour chaque action. Ce suivi de chacune des 46 actions du PPA se déroulera en 3 temps :

- avant le 1ᵉʳ juin : récolte de l’ensemble des indicateurs sur un outil informatique dédié hébergé sur le site internet www.maqualitedelair-idf.fr ;
- juin : analyse, exploitation et mise en forme des indicateurs par chaque groupe de travail qui se réunira ainsi au moins une fois par an ;
- la veille de la Journée nationale de la qualité de l’air (3ᵉ mercredi de septembre) : partage d’expériences et diffusion des indicateurs au sein du COPIL, instance de partage co-présidée par le Préfet de région et le Préfet de police.

Les résultats de cette démarche constitueront le bilan de la mise en œuvre du PPA qui sera, conformément à l’article R.222-29 du code de l’environnement, présenté chaque année aux conseils départementaux de l’environnement et des risques sanitaires et technologiques (CODERST). A ce bilan s’ajoutera l’inventaire des émissions réalisé par Airparif.

5.2 Une véritable stratégie de communication

La mise en œuvre du PPA fera ainsi l’objet d’un suivi rigoureux qui s’appuiera notamment sur l’évaluation annuelle des indicateurs de suivi définis pour chaque action. Par ailleurs, afin d’accompagner les changements de comportement, la mise en œuvre du Plan de Protection de l’Atmosphère passe par une véritable stratégie de communication.

La révision du PPA a donné naissance au site internet www.maqualitedelair-idf.fr. Ce site internet est avant tout un site d’information tous publics sur la qualité de l’air en Île-de-France, qui complète les informations techniques mises en ligne par Airparif. Une brochure a par ailleurs été éditée et distribuée, et elle sera mise à jour avec de nouvelles infographies, notamment sur l’utilisation du chauffage au bois. Un guide du « Qui Fait Quoi de la qualité de l’air en Île-de-France » sera par ailleurs publié, permettant à tout un chacun de comprendre le jeu d’acteurs et les responsabilités associées.

Le groupe de travail « actions citoyennes » a formalisé un document d’engagement du citoyen francilien à travers les 10 bons gestes pour la qualité de l’air en Île-de-France ; la diffusion de ces gestes, via les associations de défense de l’environnement participant au groupe de travail ainsi que sur le site internet « maqualitedelair-idf.fr » permet de donner des outils au citoyen qui veut s’engager pour limiter ses émissions.

Enfin, dans le but de faciliter la diffusion du plan de protection de l’atmosphère auprès de l’ensemble des acteurs impliqués, des synthèses seront publiées par secteur (pour les secteurs aérien, agricole, industriel, résidentiel-tertiaire et chantiers, transport routier, à destination des collectivités et pour le grand public).
Conclusion et liste des défis

Ce PPA est approuvé par arrêté interpréfectoral. L’arrêté prévoit d’imposer les mesures conservées de l’ancien PPA et de nouvelles mesures réglementaires issues des 25 défis : nouvelles valeurs limites d’émission pour certaines installations classées et généralisation de l’obligation de réaliser des plans de mobilité à l’ensemble des administrations et établissements publics.

Les modélisations réalisées permettent par ailleurs de démontrer que la situation de fond sera, en 2020, conforme aux valeurs limites européennes. Douze défis, sur les 25 du PPA, permettent de diviser par 9 le nombre de Franciliens exposés à des dépassements des valeurs limites par rapport à 2014 et de contenir les dépassements à proximité des axes routiers. Comme tout exercice prospectif, ces résultats sont à manipuler avec précaution.

Les dépassements de la valeur limite annuelle en dioxyde d’azote et de la valeur limite journalière en particules PM$_{10}$ qui demeurent sur les stations en proximité du trafic à la suite de la modélisation devront être examinés au cas par cas par les collectivités concernées dans le cadre des plans climat air énergie territoriaux (PCAET). Ces collectivités pourront décider, notamment, de renforcer les mesures de restrictions de circulation.

13 défis du PPA n’ont pu être modélisés en raison de l’impossibilité de quantifier avec précision leur impact sur la qualité de l’air. Parmi ces défis non modélisés, la communication et la sensibilisation, déjà engagées, sont l’une des clefs du nécessaire changement de nos comportements, de notre appréhension de la mobilité et du chauffage individuel au bois.

Par ailleurs, de nombreuses actions, qui ne sont pas explicitement recensées dans le PPA, sont autant de contributions positives à l’amélioration de la qualité de l’air. C’est le cas des PCAET dont les volets « air » participeront à l’atteinte des objectifs du PPA. La modélisation ne tient pas compte, non plus, des défis du Plan de Déplacements Urbains de l’Île-de-France, de toutes les actions des collectivités locales autres que les PCAET, des actions nationales portées par le Plan de Réduction des Emissions de Polluants Atmosphériques (PREPA), des innovations qui pourraient être déployées d’ici 2020.

Conformément à l’article R222-15 du Code de l’environnement, la modélisation proposée ici a pour unique but d’évaluer l’impact du seul PPA sur la qualité de l’air.

Ainsi, la modélisation effectuée permet de montrer des gains substantiels qui pourraient être démultipliés si la zone à circulation restreinte de Paris était étendue.

La mise en œuvre de tous les défis du PPA d’ici 2020, ainsi que des PCAET, du PDUIF et du PREPA permettront de respecter les valeurs limites d’ici 2025.

Le respect de ces valeurs limites ne garantit pas l’absence d’impact sanitaire. Le PPA permet de réduire de 15% le nombre de morts prématurés ; son coût de mise en œuvre est inférieur au gain sanitaire monétarisé. La mise en œuvre du PPA conduit à un bénéfice net pour la société de 57 M€.

Ce PPA est une action collective pour la reconquête de la qualité de l’air en Île-de-France et la protection de la santé des Franciliens : nous sommes tous, au quotidien et dans nos habitudes, les ambassadeurs du PPA.